L(s) = 1 | − 46.1·3-s + (−271. + 68.1i)5-s − 1.08e3i·7-s − 52.7·9-s − 2.23e3i·11-s − 9.58e3·13-s + (1.25e4 − 3.14e3i)15-s − 2.58e4i·17-s − 1.92e4i·19-s + 5.02e4i·21-s − 9.05e4i·23-s + (6.88e4 − 3.69e4i)25-s + 1.03e5·27-s − 6.22e4i·29-s − 1.75e5·31-s + ⋯ |
L(s) = 1 | − 0.987·3-s + (−0.969 + 0.243i)5-s − 1.19i·7-s − 0.0241·9-s − 0.506i·11-s − 1.20·13-s + (0.958 − 0.240i)15-s − 1.27i·17-s − 0.645i·19-s + 1.18i·21-s − 1.55i·23-s + (0.881 − 0.472i)25-s + 1.01·27-s − 0.474i·29-s − 1.05·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.129 - 0.991i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.129 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.1707070843\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1707070843\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (271. - 68.1i)T \) |
good | 3 | \( 1 + 46.1T + 2.18e3T^{2} \) |
| 7 | \( 1 + 1.08e3iT - 8.23e5T^{2} \) |
| 11 | \( 1 + 2.23e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + 9.58e3T + 6.27e7T^{2} \) |
| 17 | \( 1 + 2.58e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 + 1.92e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 9.05e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 + 6.22e4iT - 1.72e10T^{2} \) |
| 31 | \( 1 + 1.75e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + 6.10e5T + 9.49e10T^{2} \) |
| 41 | \( 1 + 2.10e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 1.78e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 8.54e4iT - 5.06e11T^{2} \) |
| 53 | \( 1 + 2.29e5T + 1.17e12T^{2} \) |
| 59 | \( 1 - 9.46e5iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 1.68e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 - 2.17e6T + 6.06e12T^{2} \) |
| 71 | \( 1 + 2.01e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 2.01e6iT - 1.10e13T^{2} \) |
| 79 | \( 1 - 1.35e6T + 1.92e13T^{2} \) |
| 83 | \( 1 + 9.39e6T + 2.71e13T^{2} \) |
| 89 | \( 1 - 5.56e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + 9.80e6iT - 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95077123771986577961812326457, −10.20851919099346559488278727095, −8.684928247953880170068545841979, −7.33292566878992651322228175433, −6.81091513722821066110770773882, −5.21108959491655111123936123832, −4.29727943768168616707800820170, −2.87916307702809529738469495756, −0.56667929072593769222327223962, −0.098301455233866284864609583685,
1.78638728131336636449863613141, 3.48789103256259026366173913450, 4.98874131736470077692645329822, 5.67875647803669523964895452447, 7.03490295917155399706588111709, 8.163747366295455604604780088390, 9.219913741978357185888005246078, 10.50338216914669739925415524569, 11.54397122508689192331502075202, 12.23669771416876854114147431103