L(s) = 1 | − 69.7i·3-s + 125i·5-s − 1.35e3·7-s − 2.67e3·9-s − 2.63e3i·11-s − 1.51e4i·13-s + 8.71e3·15-s − 6.98e3·17-s + 3.27e4i·19-s + 9.47e4i·21-s − 8.06e4·23-s − 1.56e4·25-s + 3.40e4i·27-s + 9.94e4i·29-s + 6.67e4·31-s + ⋯ |
L(s) = 1 | − 1.49i·3-s + 0.447i·5-s − 1.49·7-s − 1.22·9-s − 0.597i·11-s − 1.91i·13-s + 0.666·15-s − 0.345·17-s + 1.09i·19-s + 2.23i·21-s − 1.38·23-s − 0.199·25-s + 0.333i·27-s + 0.756i·29-s + 0.402·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.598 - 0.801i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.598 - 0.801i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.3292745245\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3292745245\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - 125iT \) |
good | 3 | \( 1 + 69.7iT - 2.18e3T^{2} \) |
| 7 | \( 1 + 1.35e3T + 8.23e5T^{2} \) |
| 11 | \( 1 + 2.63e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + 1.51e4iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 6.98e3T + 4.10e8T^{2} \) |
| 19 | \( 1 - 3.27e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 8.06e4T + 3.40e9T^{2} \) |
| 29 | \( 1 - 9.94e4iT - 1.72e10T^{2} \) |
| 31 | \( 1 - 6.67e4T + 2.75e10T^{2} \) |
| 37 | \( 1 - 2.87e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 7.76e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 4.46e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 - 3.79e5T + 5.06e11T^{2} \) |
| 53 | \( 1 - 8.12e4iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 6.33e5iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 9.78e5iT - 3.14e12T^{2} \) |
| 67 | \( 1 + 2.57e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 3.86e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + 5.37e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + 8.07e5T + 1.92e13T^{2} \) |
| 83 | \( 1 - 2.70e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 3.28e6T + 4.42e13T^{2} \) |
| 97 | \( 1 - 4.89e6T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11735277326556744507106035727, −10.69998930381848233174278071307, −9.800263722267088095889926043136, −8.264879668754269157493481148792, −7.53236033225842245768316407133, −6.31710246284033487019632820608, −5.88606104334878942329042842149, −3.45826732564418757851348316009, −2.56567762184557727726585780444, −0.942358875913096287265850195779,
0.10436219221722409579026139521, 2.38057782306533037341834772136, 3.95023437954654880705806220662, 4.45019791016368003992583136470, 5.94100857687896742666103572551, 7.05219611424322215434831913433, 8.930841446978051799952598049784, 9.435771157973831327617892034603, 10.10456482227555541044229404745, 11.31335801595519455040496839112