Properties

Label 2-160-8.5-c7-0-2
Degree $2$
Conductor $160$
Sign $0.598 - 0.801i$
Analytic cond. $49.9816$
Root an. cond. $7.06976$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 69.7i·3-s + 125i·5-s − 1.35e3·7-s − 2.67e3·9-s − 2.63e3i·11-s − 1.51e4i·13-s + 8.71e3·15-s − 6.98e3·17-s + 3.27e4i·19-s + 9.47e4i·21-s − 8.06e4·23-s − 1.56e4·25-s + 3.40e4i·27-s + 9.94e4i·29-s + 6.67e4·31-s + ⋯
L(s)  = 1  − 1.49i·3-s + 0.447i·5-s − 1.49·7-s − 1.22·9-s − 0.597i·11-s − 1.91i·13-s + 0.666·15-s − 0.345·17-s + 1.09i·19-s + 2.23i·21-s − 1.38·23-s − 0.199·25-s + 0.333i·27-s + 0.756i·29-s + 0.402·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.598 - 0.801i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.598 - 0.801i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(160\)    =    \(2^{5} \cdot 5\)
Sign: $0.598 - 0.801i$
Analytic conductor: \(49.9816\)
Root analytic conductor: \(7.06976\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{160} (81, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 160,\ (\ :7/2),\ 0.598 - 0.801i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.3292745245\)
\(L(\frac12)\) \(\approx\) \(0.3292745245\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 - 125iT \)
good3 \( 1 + 69.7iT - 2.18e3T^{2} \)
7 \( 1 + 1.35e3T + 8.23e5T^{2} \)
11 \( 1 + 2.63e3iT - 1.94e7T^{2} \)
13 \( 1 + 1.51e4iT - 6.27e7T^{2} \)
17 \( 1 + 6.98e3T + 4.10e8T^{2} \)
19 \( 1 - 3.27e4iT - 8.93e8T^{2} \)
23 \( 1 + 8.06e4T + 3.40e9T^{2} \)
29 \( 1 - 9.94e4iT - 1.72e10T^{2} \)
31 \( 1 - 6.67e4T + 2.75e10T^{2} \)
37 \( 1 - 2.87e5iT - 9.49e10T^{2} \)
41 \( 1 - 7.76e5T + 1.94e11T^{2} \)
43 \( 1 - 4.46e5iT - 2.71e11T^{2} \)
47 \( 1 - 3.79e5T + 5.06e11T^{2} \)
53 \( 1 - 8.12e4iT - 1.17e12T^{2} \)
59 \( 1 - 6.33e5iT - 2.48e12T^{2} \)
61 \( 1 + 9.78e5iT - 3.14e12T^{2} \)
67 \( 1 + 2.57e6iT - 6.06e12T^{2} \)
71 \( 1 - 3.86e6T + 9.09e12T^{2} \)
73 \( 1 + 5.37e6T + 1.10e13T^{2} \)
79 \( 1 + 8.07e5T + 1.92e13T^{2} \)
83 \( 1 - 2.70e6iT - 2.71e13T^{2} \)
89 \( 1 - 3.28e6T + 4.42e13T^{2} \)
97 \( 1 - 4.89e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.11735277326556744507106035727, −10.69998930381848233174278071307, −9.800263722267088095889926043136, −8.264879668754269157493481148792, −7.53236033225842245768316407133, −6.31710246284033487019632820608, −5.88606104334878942329042842149, −3.45826732564418757851348316009, −2.56567762184557727726585780444, −0.942358875913096287265850195779, 0.10436219221722409579026139521, 2.38057782306533037341834772136, 3.95023437954654880705806220662, 4.45019791016368003992583136470, 5.94100857687896742666103572551, 7.05219611424322215434831913433, 8.930841446978051799952598049784, 9.435771157973831327617892034603, 10.10456482227555541044229404745, 11.31335801595519455040496839112

Graph of the $Z$-function along the critical line