L(s) = 1 | + 69.9i·3-s + 125i·5-s + 814.·7-s − 2.70e3·9-s − 1.99e3i·11-s + 2.04e3i·13-s − 8.74e3·15-s − 2.25e4·17-s − 3.85e4i·19-s + 5.69e4i·21-s − 1.06e5·23-s − 1.56e4·25-s − 3.63e4i·27-s + 1.06e5i·29-s − 1.99e5·31-s + ⋯ |
L(s) = 1 | + 1.49i·3-s + 0.447i·5-s + 0.897·7-s − 1.23·9-s − 0.451i·11-s + 0.257i·13-s − 0.668·15-s − 1.11·17-s − 1.28i·19-s + 1.34i·21-s − 1.82·23-s − 0.199·25-s − 0.355i·27-s + 0.812i·29-s − 1.20·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.176 + 0.984i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.176 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.1314284490\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1314284490\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - 125iT \) |
good | 3 | \( 1 - 69.9iT - 2.18e3T^{2} \) |
| 7 | \( 1 - 814.T + 8.23e5T^{2} \) |
| 11 | \( 1 + 1.99e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 - 2.04e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 + 2.25e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 3.85e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 + 1.06e5T + 3.40e9T^{2} \) |
| 29 | \( 1 - 1.06e5iT - 1.72e10T^{2} \) |
| 31 | \( 1 + 1.99e5T + 2.75e10T^{2} \) |
| 37 | \( 1 + 8.81e4iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 5.69e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 8.91e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 - 1.03e6T + 5.06e11T^{2} \) |
| 53 | \( 1 + 1.69e5iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 1.34e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 2.04e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 + 2.79e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 3.12e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 1.35e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + 7.48e5T + 1.92e13T^{2} \) |
| 83 | \( 1 + 8.31e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 4.26e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + 1.04e7T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.89499195914228471686924149762, −10.98591887856827582438020708918, −10.49914913904289758951285394198, −9.259651313163710249549726794278, −8.524069654332202588636834548878, −7.06209766127881660352173640228, −5.58357013348470307278229741070, −4.56264682563487646337035471493, −3.64688738441377108741159437513, −2.14623951246357107290159086765,
0.03241057982183606904235369624, 1.47821896823022596700039418103, 2.14459745804065805660738415999, 4.17623571650753219920008702975, 5.59800940093050544078571944568, 6.65741345015562020267137878632, 7.88584744381632067515958556779, 8.254450121015228706123762359339, 9.766671610359108074831153479284, 11.16772074028891839995587754732