L(s) = 1 | + 47.3i·3-s + 125i·5-s − 608.·7-s − 52.1·9-s − 6.83e3i·11-s + 5.23e3i·13-s − 5.91e3·15-s + 2.66e4·17-s − 5.21e4i·19-s − 2.88e4i·21-s + 6.62e4·23-s − 1.56e4·25-s + 1.01e5i·27-s − 2.83e3i·29-s − 8.27e4·31-s + ⋯ |
L(s) = 1 | + 1.01i·3-s + 0.447i·5-s − 0.671·7-s − 0.0238·9-s − 1.54i·11-s + 0.661i·13-s − 0.452·15-s + 1.31·17-s − 1.74i·19-s − 0.679i·21-s + 1.13·23-s − 0.199·25-s + 0.987i·27-s − 0.0216i·29-s − 0.498·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.994818445\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.994818445\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - 125iT \) |
good | 3 | \( 1 - 47.3iT - 2.18e3T^{2} \) |
| 7 | \( 1 + 608.T + 8.23e5T^{2} \) |
| 11 | \( 1 + 6.83e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 - 5.23e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 - 2.66e4T + 4.10e8T^{2} \) |
| 19 | \( 1 + 5.21e4iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 6.62e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 2.83e3iT - 1.72e10T^{2} \) |
| 31 | \( 1 + 8.27e4T + 2.75e10T^{2} \) |
| 37 | \( 1 + 3.92e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 - 5.22e5T + 1.94e11T^{2} \) |
| 43 | \( 1 - 3.07e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 + 2.82e5T + 5.06e11T^{2} \) |
| 53 | \( 1 - 1.23e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 1.44e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 + 6.34e5iT - 3.14e12T^{2} \) |
| 67 | \( 1 + 1.13e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 1.83e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 2.75e6T + 1.10e13T^{2} \) |
| 79 | \( 1 - 8.21e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 3.77e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 - 4.96e6T + 4.42e13T^{2} \) |
| 97 | \( 1 - 4.13e6T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23131687370762215770198210533, −10.78475225793641176914379306478, −9.534536425790165133082772599634, −8.982436899216372609760270094903, −7.41149734188391221464565946459, −6.25450674620527708346515032340, −5.06801431964690880817055776730, −3.71522068465300724367350956666, −2.89480811131420586725433991282, −0.73148873966556176330440897718,
0.902164096291673327364466759564, 1.92380437003263366910884224153, 3.50735857736657456962975122981, 5.05499270080623404425180843983, 6.29664139951447736279740711164, 7.37153954707201272306003339473, 8.061965254892346884924137191293, 9.613189379023310064004026196848, 10.22884099253241919978127426605, 11.94138123259174985771860537760