L(s) = 1 | + 4.99i·3-s + 125i·5-s − 514.·7-s + 2.16e3·9-s + 2.38e3i·11-s − 3.80e3i·13-s − 624.·15-s + 9.79e3·17-s − 4.55e3i·19-s − 2.57e3i·21-s + 1.98e4·23-s − 1.56e4·25-s + 2.17e4i·27-s + 1.41e5i·29-s − 3.58e4·31-s + ⋯ |
L(s) = 1 | + 0.106i·3-s + 0.447i·5-s − 0.566·7-s + 0.988·9-s + 0.540i·11-s − 0.480i·13-s − 0.0478·15-s + 0.483·17-s − 0.152i·19-s − 0.0605i·21-s + 0.339·23-s − 0.199·25-s + 0.212i·27-s + 1.07i·29-s − 0.216·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.294 - 0.955i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.294 - 0.955i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.554103531\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.554103531\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 - 125iT \) |
good | 3 | \( 1 - 4.99iT - 2.18e3T^{2} \) |
| 7 | \( 1 + 514.T + 8.23e5T^{2} \) |
| 11 | \( 1 - 2.38e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 + 3.80e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 - 9.79e3T + 4.10e8T^{2} \) |
| 19 | \( 1 + 4.55e3iT - 8.93e8T^{2} \) |
| 23 | \( 1 - 1.98e4T + 3.40e9T^{2} \) |
| 29 | \( 1 - 1.41e5iT - 1.72e10T^{2} \) |
| 31 | \( 1 + 3.58e4T + 2.75e10T^{2} \) |
| 37 | \( 1 - 2.18e5iT - 9.49e10T^{2} \) |
| 41 | \( 1 + 5.52e5T + 1.94e11T^{2} \) |
| 43 | \( 1 + 5.77e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 - 1.09e6T + 5.06e11T^{2} \) |
| 53 | \( 1 - 1.77e6iT - 1.17e12T^{2} \) |
| 59 | \( 1 - 1.29e6iT - 2.48e12T^{2} \) |
| 61 | \( 1 - 1.16e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 - 4.13e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 + 2.88e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + 1.02e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + 2.76e6T + 1.92e13T^{2} \) |
| 83 | \( 1 - 8.58e6iT - 2.71e13T^{2} \) |
| 89 | \( 1 + 1.40e5T + 4.42e13T^{2} \) |
| 97 | \( 1 + 1.15e7T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.00258639648196334393412598583, −10.58548166132350506223393650768, −10.03874606386481595533364523839, −8.933425395819778639496377583051, −7.47779244361221325478757375658, −6.76918183354396004967866015711, −5.38983050872189431228567201610, −4.04948718306719650703734098363, −2.84761769125660631305657719527, −1.28053771512341511201874464938,
0.43819974388688562644650765153, 1.75882260935402855253653477697, 3.41730587436499857110834226969, 4.59918318960631023413473574639, 5.94931452742319874151346260812, 7.03078504810960736201274608010, 8.155168611843568817708782752917, 9.339955734986008464989342322820, 10.10470842297087936116024844993, 11.34742436463071079405037744670