Properties

Label 2-160-1.1-c9-0-3
Degree $2$
Conductor $160$
Sign $1$
Analytic cond. $82.4057$
Root an. cond. $9.07776$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 31.5·3-s − 625·5-s − 5.76e3·7-s − 1.86e4·9-s + 4.00e4·11-s − 6.68e4·13-s − 1.97e4·15-s − 9.14e4·17-s − 9.01e5·19-s − 1.81e5·21-s + 2.60e5·23-s + 3.90e5·25-s − 1.21e6·27-s − 8.22e5·29-s + 8.24e6·31-s + 1.26e6·33-s + 3.60e6·35-s − 3.26e6·37-s − 2.10e6·39-s − 7.21e5·41-s + 4.71e6·43-s + 1.16e7·45-s + 1.54e6·47-s − 7.14e6·49-s − 2.88e6·51-s + 4.95e7·53-s − 2.50e7·55-s + ⋯
L(s)  = 1  + 0.224·3-s − 0.447·5-s − 0.907·7-s − 0.949·9-s + 0.825·11-s − 0.649·13-s − 0.100·15-s − 0.265·17-s − 1.58·19-s − 0.203·21-s + 0.194·23-s + 0.200·25-s − 0.438·27-s − 0.215·29-s + 1.60·31-s + 0.185·33-s + 0.405·35-s − 0.286·37-s − 0.146·39-s − 0.0398·41-s + 0.210·43-s + 0.424·45-s + 0.0461·47-s − 0.176·49-s − 0.0596·51-s + 0.863·53-s − 0.369·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(160\)    =    \(2^{5} \cdot 5\)
Sign: $1$
Analytic conductor: \(82.4057\)
Root analytic conductor: \(9.07776\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 160,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.106663802\)
\(L(\frac12)\) \(\approx\) \(1.106663802\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + 625T \)
good3 \( 1 - 31.5T + 1.96e4T^{2} \)
7 \( 1 + 5.76e3T + 4.03e7T^{2} \)
11 \( 1 - 4.00e4T + 2.35e9T^{2} \)
13 \( 1 + 6.68e4T + 1.06e10T^{2} \)
17 \( 1 + 9.14e4T + 1.18e11T^{2} \)
19 \( 1 + 9.01e5T + 3.22e11T^{2} \)
23 \( 1 - 2.60e5T + 1.80e12T^{2} \)
29 \( 1 + 8.22e5T + 1.45e13T^{2} \)
31 \( 1 - 8.24e6T + 2.64e13T^{2} \)
37 \( 1 + 3.26e6T + 1.29e14T^{2} \)
41 \( 1 + 7.21e5T + 3.27e14T^{2} \)
43 \( 1 - 4.71e6T + 5.02e14T^{2} \)
47 \( 1 - 1.54e6T + 1.11e15T^{2} \)
53 \( 1 - 4.95e7T + 3.29e15T^{2} \)
59 \( 1 + 1.47e8T + 8.66e15T^{2} \)
61 \( 1 - 1.31e8T + 1.16e16T^{2} \)
67 \( 1 - 3.13e8T + 2.72e16T^{2} \)
71 \( 1 + 1.43e8T + 4.58e16T^{2} \)
73 \( 1 + 7.49e6T + 5.88e16T^{2} \)
79 \( 1 + 4.72e7T + 1.19e17T^{2} \)
83 \( 1 + 5.06e8T + 1.86e17T^{2} \)
89 \( 1 - 2.62e8T + 3.50e17T^{2} \)
97 \( 1 - 1.33e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.27883060355314891695923840816, −10.11779267225740409691090766588, −9.056706042944545503621225079872, −8.264286179802283771504684693988, −6.89608398285026782050129488471, −6.06504075406218904295988305688, −4.52537438100135420988563785053, −3.38653178912414740939446446388, −2.29903497738909627219863563559, −0.49767353109249724893970600427, 0.49767353109249724893970600427, 2.29903497738909627219863563559, 3.38653178912414740939446446388, 4.52537438100135420988563785053, 6.06504075406218904295988305688, 6.89608398285026782050129488471, 8.264286179802283771504684693988, 9.056706042944545503621225079872, 10.11779267225740409691090766588, 11.27883060355314891695923840816

Graph of the $Z$-function along the critical line