Properties

Label 2-2e4-1.1-c7-0-2
Degree $2$
Conductor $16$
Sign $-1$
Analytic cond. $4.99816$
Root an. cond. $2.23565$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·3-s − 210·5-s − 1.01e3·7-s − 2.04e3·9-s − 1.09e3·11-s + 1.38e3·13-s + 2.52e3·15-s + 1.47e4·17-s + 3.99e4·19-s + 1.21e4·21-s − 6.87e4·23-s − 3.40e4·25-s + 5.07e4·27-s − 1.02e5·29-s − 2.27e5·31-s + 1.31e4·33-s + 2.13e5·35-s + 1.60e5·37-s − 1.65e4·39-s + 1.08e4·41-s + 6.30e5·43-s + 4.29e5·45-s − 4.72e5·47-s + 2.08e5·49-s − 1.76e5·51-s − 1.49e6·53-s + 2.29e5·55-s + ⋯
L(s)  = 1  − 0.256·3-s − 0.751·5-s − 1.11·7-s − 0.934·9-s − 0.247·11-s + 0.174·13-s + 0.192·15-s + 0.725·17-s + 1.33·19-s + 0.287·21-s − 1.17·23-s − 0.435·25-s + 0.496·27-s − 0.780·29-s − 1.37·31-s + 0.0634·33-s + 0.841·35-s + 0.521·37-s − 0.0447·39-s + 0.0245·41-s + 1.20·43-s + 0.701·45-s − 0.664·47-s + 0.253·49-s − 0.186·51-s − 1.37·53-s + 0.185·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16\)    =    \(2^{4}\)
Sign: $-1$
Analytic conductor: \(4.99816\)
Root analytic conductor: \(2.23565\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 16,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
good3 \( 1 + 4 p T + p^{7} T^{2} \)
5 \( 1 + 42 p T + p^{7} T^{2} \)
7 \( 1 + 1016 T + p^{7} T^{2} \)
11 \( 1 + 1092 T + p^{7} T^{2} \)
13 \( 1 - 1382 T + p^{7} T^{2} \)
17 \( 1 - 14706 T + p^{7} T^{2} \)
19 \( 1 - 39940 T + p^{7} T^{2} \)
23 \( 1 + 68712 T + p^{7} T^{2} \)
29 \( 1 + 102570 T + p^{7} T^{2} \)
31 \( 1 + 227552 T + p^{7} T^{2} \)
37 \( 1 - 160526 T + p^{7} T^{2} \)
41 \( 1 - 10842 T + p^{7} T^{2} \)
43 \( 1 - 630748 T + p^{7} T^{2} \)
47 \( 1 + 472656 T + p^{7} T^{2} \)
53 \( 1 + 1494018 T + p^{7} T^{2} \)
59 \( 1 + 2640660 T + p^{7} T^{2} \)
61 \( 1 - 827702 T + p^{7} T^{2} \)
67 \( 1 - 126004 T + p^{7} T^{2} \)
71 \( 1 - 1414728 T + p^{7} T^{2} \)
73 \( 1 - 980282 T + p^{7} T^{2} \)
79 \( 1 - 3566800 T + p^{7} T^{2} \)
83 \( 1 + 5672892 T + p^{7} T^{2} \)
89 \( 1 + 11951190 T + p^{7} T^{2} \)
97 \( 1 - 8682146 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.61230088559662560403243379778, −15.75840624968036963043557726119, −14.12355208363710712333207539217, −12.52030974291653514059742068362, −11.30617514104106319868470141387, −9.565435243058661987926040580078, −7.72947728406922360183810037330, −5.82525239813900472703591586342, −3.39930778928952202693084202511, 0, 3.39930778928952202693084202511, 5.82525239813900472703591586342, 7.72947728406922360183810037330, 9.565435243058661987926040580078, 11.30617514104106319868470141387, 12.52030974291653514059742068362, 14.12355208363710712333207539217, 15.75840624968036963043557726119, 16.61230088559662560403243379778

Graph of the $Z$-function along the critical line