Properties

Label 2-1589-1.1-c1-0-30
Degree $2$
Conductor $1589$
Sign $1$
Analytic cond. $12.6882$
Root an. cond. $3.56205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.792·2-s − 0.186·3-s − 1.37·4-s + 0.0889·5-s − 0.147·6-s − 7-s − 2.67·8-s − 2.96·9-s + 0.0705·10-s + 3.65·11-s + 0.255·12-s + 3.57·13-s − 0.792·14-s − 0.0166·15-s + 0.626·16-s + 2.55·17-s − 2.34·18-s − 3.97·19-s − 0.122·20-s + 0.186·21-s + 2.89·22-s − 0.443·23-s + 0.498·24-s − 4.99·25-s + 2.83·26-s + 1.11·27-s + 1.37·28-s + ⋯
L(s)  = 1  + 0.560·2-s − 0.107·3-s − 0.685·4-s + 0.0398·5-s − 0.0603·6-s − 0.377·7-s − 0.944·8-s − 0.988·9-s + 0.0223·10-s + 1.10·11-s + 0.0738·12-s + 0.990·13-s − 0.211·14-s − 0.00428·15-s + 0.156·16-s + 0.620·17-s − 0.553·18-s − 0.911·19-s − 0.0273·20-s + 0.0407·21-s + 0.616·22-s − 0.0925·23-s + 0.101·24-s − 0.998·25-s + 0.555·26-s + 0.214·27-s + 0.259·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1589 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1589 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1589\)    =    \(7 \cdot 227\)
Sign: $1$
Analytic conductor: \(12.6882\)
Root analytic conductor: \(3.56205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1589,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.586829570\)
\(L(\frac12)\) \(\approx\) \(1.586829570\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
227 \( 1 - T \)
good2 \( 1 - 0.792T + 2T^{2} \)
3 \( 1 + 0.186T + 3T^{2} \)
5 \( 1 - 0.0889T + 5T^{2} \)
11 \( 1 - 3.65T + 11T^{2} \)
13 \( 1 - 3.57T + 13T^{2} \)
17 \( 1 - 2.55T + 17T^{2} \)
19 \( 1 + 3.97T + 19T^{2} \)
23 \( 1 + 0.443T + 23T^{2} \)
29 \( 1 - 2.44T + 29T^{2} \)
31 \( 1 - 4.88T + 31T^{2} \)
37 \( 1 - 0.524T + 37T^{2} \)
41 \( 1 - 3.46T + 41T^{2} \)
43 \( 1 - 2.71T + 43T^{2} \)
47 \( 1 - 10.7T + 47T^{2} \)
53 \( 1 - 10.2T + 53T^{2} \)
59 \( 1 - 5.02T + 59T^{2} \)
61 \( 1 - 6.46T + 61T^{2} \)
67 \( 1 - 5.73T + 67T^{2} \)
71 \( 1 + 3.96T + 71T^{2} \)
73 \( 1 - 3.44T + 73T^{2} \)
79 \( 1 - 5.78T + 79T^{2} \)
83 \( 1 - 0.896T + 83T^{2} \)
89 \( 1 - 2.96T + 89T^{2} \)
97 \( 1 + 4.10T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.276818887162262982336085896066, −8.692440852510487972067536513702, −8.053236954531462376515619448634, −6.65931483835220908844850896911, −6.01419066413532494735053053746, −5.44374044247819433427048233432, −4.15647088309756671474307666757, −3.72094022305370013657665992058, −2.58045216286733143021047792430, −0.829371001484912887722726326769, 0.829371001484912887722726326769, 2.58045216286733143021047792430, 3.72094022305370013657665992058, 4.15647088309756671474307666757, 5.44374044247819433427048233432, 6.01419066413532494735053053746, 6.65931483835220908844850896911, 8.053236954531462376515619448634, 8.692440852510487972067536513702, 9.276818887162262982336085896066

Graph of the $Z$-function along the critical line