Properties

Label 2-1589-1.1-c1-0-12
Degree $2$
Conductor $1589$
Sign $1$
Analytic cond. $12.6882$
Root an. cond. $3.56205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.693·2-s − 0.510·3-s − 1.51·4-s + 0.240·5-s + 0.353·6-s − 7-s + 2.43·8-s − 2.73·9-s − 0.167·10-s − 4.75·11-s + 0.775·12-s − 3.79·13-s + 0.693·14-s − 0.123·15-s + 1.34·16-s + 7.12·17-s + 1.89·18-s + 1.31·19-s − 0.366·20-s + 0.510·21-s + 3.29·22-s − 8.99·23-s − 1.24·24-s − 4.94·25-s + 2.63·26-s + 2.93·27-s + 1.51·28-s + ⋯
L(s)  = 1  − 0.490·2-s − 0.294·3-s − 0.759·4-s + 0.107·5-s + 0.144·6-s − 0.377·7-s + 0.862·8-s − 0.913·9-s − 0.0528·10-s − 1.43·11-s + 0.223·12-s − 1.05·13-s + 0.185·14-s − 0.0317·15-s + 0.337·16-s + 1.72·17-s + 0.447·18-s + 0.301·19-s − 0.0818·20-s + 0.111·21-s + 0.702·22-s − 1.87·23-s − 0.254·24-s − 0.988·25-s + 0.516·26-s + 0.563·27-s + 0.287·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1589 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1589 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1589\)    =    \(7 \cdot 227\)
Sign: $1$
Analytic conductor: \(12.6882\)
Root analytic conductor: \(3.56205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1589,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4776544938\)
\(L(\frac12)\) \(\approx\) \(0.4776544938\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
227 \( 1 - T \)
good2 \( 1 + 0.693T + 2T^{2} \)
3 \( 1 + 0.510T + 3T^{2} \)
5 \( 1 - 0.240T + 5T^{2} \)
11 \( 1 + 4.75T + 11T^{2} \)
13 \( 1 + 3.79T + 13T^{2} \)
17 \( 1 - 7.12T + 17T^{2} \)
19 \( 1 - 1.31T + 19T^{2} \)
23 \( 1 + 8.99T + 23T^{2} \)
29 \( 1 + 4.12T + 29T^{2} \)
31 \( 1 - 10.5T + 31T^{2} \)
37 \( 1 + 4.29T + 37T^{2} \)
41 \( 1 - 0.427T + 41T^{2} \)
43 \( 1 - 2.81T + 43T^{2} \)
47 \( 1 - 4.78T + 47T^{2} \)
53 \( 1 - 11.9T + 53T^{2} \)
59 \( 1 - 8.11T + 59T^{2} \)
61 \( 1 + 6.56T + 61T^{2} \)
67 \( 1 + 5.90T + 67T^{2} \)
71 \( 1 + 0.673T + 71T^{2} \)
73 \( 1 - 3.62T + 73T^{2} \)
79 \( 1 + 10.6T + 79T^{2} \)
83 \( 1 - 9.58T + 83T^{2} \)
89 \( 1 + 9.96T + 89T^{2} \)
97 \( 1 - 6.36T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.672110629077261575169742256426, −8.507009934417578008349359678408, −7.911789463925361437273708940787, −7.37117338110922609367545877934, −5.75375166602508092263900934292, −5.57414888696350545923287527615, −4.51026534594453145345762316021, −3.35184457510693567049696893576, −2.28703786736042906196891649668, −0.50722888874657885410329560947, 0.50722888874657885410329560947, 2.28703786736042906196891649668, 3.35184457510693567049696893576, 4.51026534594453145345762316021, 5.57414888696350545923287527615, 5.75375166602508092263900934292, 7.37117338110922609367545877934, 7.911789463925361437273708940787, 8.507009934417578008349359678408, 9.672110629077261575169742256426

Graph of the $Z$-function along the critical line