Properties

Label 2-1584-3.2-c2-0-39
Degree $2$
Conductor $1584$
Sign $-0.816 - 0.577i$
Analytic cond. $43.1608$
Root an. cond. $6.56969$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.36i·5-s + 8.08·7-s − 3.31i·11-s − 19.8·13-s + 30.8i·17-s − 13.9·19-s − 24.1i·23-s − 44.9·25-s − 8.62i·29-s − 46.9·31-s − 67.6i·35-s − 58.1·37-s + 12.6i·41-s + 65.2·43-s + 57.8i·47-s + ⋯
L(s)  = 1  − 1.67i·5-s + 1.15·7-s − 0.301i·11-s − 1.52·13-s + 1.81i·17-s − 0.732·19-s − 1.05i·23-s − 1.79·25-s − 0.297i·29-s − 1.51·31-s − 1.93i·35-s − 1.57·37-s + 0.307i·41-s + 1.51·43-s + 1.23i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1584 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.816 - 0.577i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1584\)    =    \(2^{4} \cdot 3^{2} \cdot 11\)
Sign: $-0.816 - 0.577i$
Analytic conductor: \(43.1608\)
Root analytic conductor: \(6.56969\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1584} (881, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1584,\ (\ :1),\ -0.816 - 0.577i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.2862531796\)
\(L(\frac12)\) \(\approx\) \(0.2862531796\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + 3.31iT \)
good5 \( 1 + 8.36iT - 25T^{2} \)
7 \( 1 - 8.08T + 49T^{2} \)
13 \( 1 + 19.8T + 169T^{2} \)
17 \( 1 - 30.8iT - 289T^{2} \)
19 \( 1 + 13.9T + 361T^{2} \)
23 \( 1 + 24.1iT - 529T^{2} \)
29 \( 1 + 8.62iT - 841T^{2} \)
31 \( 1 + 46.9T + 961T^{2} \)
37 \( 1 + 58.1T + 1.36e3T^{2} \)
41 \( 1 - 12.6iT - 1.68e3T^{2} \)
43 \( 1 - 65.2T + 1.84e3T^{2} \)
47 \( 1 - 57.8iT - 2.20e3T^{2} \)
53 \( 1 + 58.8iT - 2.80e3T^{2} \)
59 \( 1 - 77.0iT - 3.48e3T^{2} \)
61 \( 1 + 71.4T + 3.72e3T^{2} \)
67 \( 1 - 100.T + 4.48e3T^{2} \)
71 \( 1 + 24.6iT - 5.04e3T^{2} \)
73 \( 1 + 38.4T + 5.32e3T^{2} \)
79 \( 1 - 10.7T + 6.24e3T^{2} \)
83 \( 1 + 50.4iT - 6.88e3T^{2} \)
89 \( 1 - 59.8iT - 7.92e3T^{2} \)
97 \( 1 - 44.6T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.639446395835449502467223304607, −8.169941739216434029551738725428, −7.41434792437559033439516764973, −6.10610603362137441443176689532, −5.26520892137237442770615054497, −4.63144119857648169260368456499, −3.97287444408732761600126226445, −2.19440422033851195018613129364, −1.41989566709106857302498894043, −0.07181861685022917191308764667, 1.94570206889205319000528503092, 2.63051336608864541904044867873, 3.67716328609056512851595323142, 4.87088395015219789474029820783, 5.48820162894439694963195511692, 6.83342139941396150818588549946, 7.30178047825303124088329039167, 7.73995822025816628964997102237, 9.062089030430516427346281204995, 9.755625951742837484264493675024

Graph of the $Z$-function along the critical line