Properties

Label 8-1584e4-1.1-c1e4-0-1
Degree $8$
Conductor $6.295\times 10^{12}$
Sign $1$
Analytic cond. $25593.4$
Root an. cond. $3.55644$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·11-s − 8·25-s − 8·37-s − 16·49-s − 48·83-s − 32·97-s − 24·107-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 16·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + ⋯
L(s)  = 1  − 3.61·11-s − 8/5·25-s − 1.31·37-s − 2.28·49-s − 5.26·83-s − 3.24·97-s − 2.32·107-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.23·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 11^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 11^{4}\)
Sign: $1$
Analytic conductor: \(25593.4\)
Root analytic conductor: \(3.55644\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 11^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.2820539744\)
\(L(\frac12)\) \(\approx\) \(0.2820539744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
good5$C_2^2$ \( ( 1 + 4 T^{2} + p^{2} T^{4} )^{2} \)
7$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 22 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 + 2 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2^2$ \( ( 1 + 52 T^{2} + p^{2} T^{4} )^{2} \)
59$C_2$ \( ( 1 - 6 T + p T^{2} )^{2}( 1 + 6 T + p T^{2} )^{2} \)
61$C_2^2$ \( ( 1 + 40 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2$ \( ( 1 - 16 T + p T^{2} )^{2}( 1 + 16 T + p T^{2} )^{2} \)
71$C_2^2$ \( ( 1 - 44 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 + 152 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2$ \( ( 1 + 12 T + p T^{2} )^{4} \)
89$C_2^2$ \( ( 1 + 154 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 + 8 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−6.77903101710874446582898571255, −6.68259322183065217844392105458, −6.28507150974543660232269057913, −5.73354480490664087015383566364, −5.73230646352994958613664358022, −5.70324226126238849653780185111, −5.45598037436489630040522511266, −5.37073511413163294598744345430, −4.86906495872609416435022107462, −4.75954510626149368388795380823, −4.73901129700221629238549793581, −4.16453011900442013822460644010, −4.13030854861657757893314458726, −3.81343859589674030550127513939, −3.54664289994453280483871820388, −3.04222734005125359646225355926, −2.90373584091771913066129078834, −2.86482435180074017453468120525, −2.59159959974899513571196271239, −2.26280577542139297460551830189, −1.82742892418122828755979362369, −1.51207420712644413207972932992, −1.50399431092693880616321279907, −0.47832747922043475298689053588, −0.15912832029506996456657498644, 0.15912832029506996456657498644, 0.47832747922043475298689053588, 1.50399431092693880616321279907, 1.51207420712644413207972932992, 1.82742892418122828755979362369, 2.26280577542139297460551830189, 2.59159959974899513571196271239, 2.86482435180074017453468120525, 2.90373584091771913066129078834, 3.04222734005125359646225355926, 3.54664289994453280483871820388, 3.81343859589674030550127513939, 4.13030854861657757893314458726, 4.16453011900442013822460644010, 4.73901129700221629238549793581, 4.75954510626149368388795380823, 4.86906495872609416435022107462, 5.37073511413163294598744345430, 5.45598037436489630040522511266, 5.70324226126238849653780185111, 5.73230646352994958613664358022, 5.73354480490664087015383566364, 6.28507150974543660232269057913, 6.68259322183065217844392105458, 6.77903101710874446582898571255

Graph of the $Z$-function along the critical line