Properties

Degree $2$
Conductor $1575$
Sign $0.981 + 0.193i$
Motivic weight $0$
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (0.866 + 0.5i)4-s + (−0.258 − 0.965i)7-s + (1.22 − 1.22i)13-s + (0.499 + 0.866i)16-s + (−0.866 + 0.5i)19-s + (0.258 − 0.965i)28-s + (1 − 1.73i)31-s + (−0.448 + 1.67i)37-s + (−0.866 + 0.499i)49-s + (1.67 − 0.448i)52-s + (0.5 + 0.866i)61-s + 0.999i·64-s + (−1.67 + 0.448i)67-s + (0.448 + 1.67i)73-s − 0.999·76-s + ⋯
L(s)  = 1  + (0.866 + 0.5i)4-s + (−0.258 − 0.965i)7-s + (1.22 − 1.22i)13-s + (0.499 + 0.866i)16-s + (−0.866 + 0.5i)19-s + (0.258 − 0.965i)28-s + (1 − 1.73i)31-s + (−0.448 + 1.67i)37-s + (−0.866 + 0.499i)49-s + (1.67 − 0.448i)52-s + (0.5 + 0.866i)61-s + 0.999i·64-s + (−1.67 + 0.448i)67-s + (0.448 + 1.67i)73-s − 0.999·76-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.981 + 0.193i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.981 + 0.193i$
Motivic weight: \(0\)
Character: $\chi_{1575} (1432, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1575,\ (\ :0),\ 0.981 + 0.193i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.368376007\)
\(L(\frac12)\) \(\approx\) \(1.368376007\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + (0.258 + 0.965i)T \)
good2 \( 1 + (-0.866 - 0.5i)T^{2} \)
11 \( 1 + (-0.5 - 0.866i)T^{2} \)
13 \( 1 + (-1.22 + 1.22i)T - iT^{2} \)
17 \( 1 + (0.866 - 0.5i)T^{2} \)
19 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
23 \( 1 + (0.866 + 0.5i)T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \)
37 \( 1 + (0.448 - 1.67i)T + (-0.866 - 0.5i)T^{2} \)
41 \( 1 + T^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 + (-0.866 - 0.5i)T^{2} \)
53 \( 1 + (-0.866 + 0.5i)T^{2} \)
59 \( 1 + (0.5 + 0.866i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (1.67 - 0.448i)T + (0.866 - 0.5i)T^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + (-0.448 - 1.67i)T + (-0.866 + 0.5i)T^{2} \)
79 \( 1 + (-0.866 + 0.5i)T + (0.5 - 0.866i)T^{2} \)
83 \( 1 - iT^{2} \)
89 \( 1 + (0.5 - 0.866i)T^{2} \)
97 \( 1 + (1.22 + 1.22i)T + iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.850464409587151526666868244190, −8.413750585109308632822974950472, −8.099575795113733301581011906152, −7.19785284439916028999226136836, −6.37741764039721931278476214888, −5.79836078031074469992515593169, −4.32921940695173903882516054259, −3.57347278219466344129823894733, −2.70076653172242960124420367632, −1.27172041915631068316538179779, 1.57703436320421469760729459561, 2.46631360104468861330299454859, 3.55187887649718642116361517769, 4.77412651392797161115933520152, 5.74527013954070106563302180287, 6.47490970590098677799816789934, 6.90793487519500525510843984242, 8.178575683522602377414505933345, 8.937303605969508275711146433460, 9.501611436166530566118598453356

Graph of the $Z$-function along the critical line