Properties

Label 2-1573-1.1-c3-0-269
Degree $2$
Conductor $1573$
Sign $1$
Analytic cond. $92.8100$
Root an. cond. $9.63379$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.29·2-s + 0.842·3-s + 20.0·4-s + 17.1·5-s + 4.46·6-s + 29.9·7-s + 63.8·8-s − 26.2·9-s + 90.7·10-s + 16.8·12-s − 13·13-s + 158.·14-s + 14.4·15-s + 177.·16-s − 83.3·17-s − 139.·18-s − 30.7·19-s + 343.·20-s + 25.2·21-s − 15.4·23-s + 53.7·24-s + 168.·25-s − 68.8·26-s − 44.8·27-s + 600.·28-s + 145.·29-s + 76.4·30-s + ⋯
L(s)  = 1  + 1.87·2-s + 0.162·3-s + 2.50·4-s + 1.53·5-s + 0.303·6-s + 1.61·7-s + 2.82·8-s − 0.973·9-s + 2.86·10-s + 0.406·12-s − 0.277·13-s + 3.02·14-s + 0.248·15-s + 2.77·16-s − 1.18·17-s − 1.82·18-s − 0.371·19-s + 3.84·20-s + 0.261·21-s − 0.139·23-s + 0.457·24-s + 1.34·25-s − 0.519·26-s − 0.319·27-s + 4.05·28-s + 0.929·29-s + 0.464·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1573 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1573\)    =    \(11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(92.8100\)
Root analytic conductor: \(9.63379\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1573,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(12.06857077\)
\(L(\frac12)\) \(\approx\) \(12.06857077\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 \)
13 \( 1 + 13T \)
good2 \( 1 - 5.29T + 8T^{2} \)
3 \( 1 - 0.842T + 27T^{2} \)
5 \( 1 - 17.1T + 125T^{2} \)
7 \( 1 - 29.9T + 343T^{2} \)
17 \( 1 + 83.3T + 4.91e3T^{2} \)
19 \( 1 + 30.7T + 6.85e3T^{2} \)
23 \( 1 + 15.4T + 1.21e4T^{2} \)
29 \( 1 - 145.T + 2.43e4T^{2} \)
31 \( 1 - 241.T + 2.97e4T^{2} \)
37 \( 1 + 204.T + 5.06e4T^{2} \)
41 \( 1 - 94.6T + 6.89e4T^{2} \)
43 \( 1 + 119.T + 7.95e4T^{2} \)
47 \( 1 - 403.T + 1.03e5T^{2} \)
53 \( 1 + 495.T + 1.48e5T^{2} \)
59 \( 1 + 122.T + 2.05e5T^{2} \)
61 \( 1 - 280.T + 2.26e5T^{2} \)
67 \( 1 + 326.T + 3.00e5T^{2} \)
71 \( 1 + 764.T + 3.57e5T^{2} \)
73 \( 1 + 645.T + 3.89e5T^{2} \)
79 \( 1 + 157.T + 4.93e5T^{2} \)
83 \( 1 + 349.T + 5.71e5T^{2} \)
89 \( 1 + 1.41e3T + 7.04e5T^{2} \)
97 \( 1 - 1.02e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.914658110892383388714430565653, −8.193145110033701522658718840985, −7.06262296801802737843936740118, −6.21012567111852565332879734692, −5.66361722592278394310343738449, −4.86434244506583083633777215130, −4.38952137119283432715725872567, −2.87366515688262114030534728291, −2.27242812527076461734948166093, −1.52863750353103900074758917292, 1.52863750353103900074758917292, 2.27242812527076461734948166093, 2.87366515688262114030534728291, 4.38952137119283432715725872567, 4.86434244506583083633777215130, 5.66361722592278394310343738449, 6.21012567111852565332879734692, 7.06262296801802737843936740118, 8.193145110033701522658718840985, 8.914658110892383388714430565653

Graph of the $Z$-function along the critical line