| L(s) = 1 | + 3.08·3-s + 9.08·5-s − 17.4·9-s + 34.1·11-s − 13.0·13-s + 28.0·15-s + 12.8·17-s − 139.·19-s − 21.3·23-s − 42.5·25-s − 137.·27-s + 142.·29-s − 192.·31-s + 105.·33-s − 115.·37-s − 40.3·39-s − 396.·41-s + 252.·43-s − 158.·45-s − 11.8·47-s + 39.5·51-s − 295.·53-s + 310.·55-s − 430.·57-s − 269.·59-s + 233.·61-s − 118.·65-s + ⋯ |
| L(s) = 1 | + 0.593·3-s + 0.812·5-s − 0.648·9-s + 0.936·11-s − 0.279·13-s + 0.481·15-s + 0.183·17-s − 1.68·19-s − 0.193·23-s − 0.340·25-s − 0.977·27-s + 0.914·29-s − 1.11·31-s + 0.555·33-s − 0.514·37-s − 0.165·39-s − 1.51·41-s + 0.895·43-s − 0.526·45-s − 0.0366·47-s + 0.108·51-s − 0.765·53-s + 0.760·55-s − 1.00·57-s − 0.595·59-s + 0.490·61-s − 0.226·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
| good | 3 | \( 1 - 3.08T + 27T^{2} \) |
| 5 | \( 1 - 9.08T + 125T^{2} \) |
| 11 | \( 1 - 34.1T + 1.33e3T^{2} \) |
| 13 | \( 1 + 13.0T + 2.19e3T^{2} \) |
| 17 | \( 1 - 12.8T + 4.91e3T^{2} \) |
| 19 | \( 1 + 139.T + 6.85e3T^{2} \) |
| 23 | \( 1 + 21.3T + 1.21e4T^{2} \) |
| 29 | \( 1 - 142.T + 2.43e4T^{2} \) |
| 31 | \( 1 + 192.T + 2.97e4T^{2} \) |
| 37 | \( 1 + 115.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 396.T + 6.89e4T^{2} \) |
| 43 | \( 1 - 252.T + 7.95e4T^{2} \) |
| 47 | \( 1 + 11.8T + 1.03e5T^{2} \) |
| 53 | \( 1 + 295.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 269.T + 2.05e5T^{2} \) |
| 61 | \( 1 - 233.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 975.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 870.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 391.T + 3.89e5T^{2} \) |
| 79 | \( 1 + 897.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 658.T + 5.71e5T^{2} \) |
| 89 | \( 1 + 32.6T + 7.04e5T^{2} \) |
| 97 | \( 1 + 991.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.730717806784415904478850157886, −8.099047436534461586869808272381, −6.96190608617453684757068784148, −6.23090654536310873399879144281, −5.49779049265856586992197095326, −4.36321181390494933576559479456, −3.43690765512602713424874015135, −2.37310639242355687365933068911, −1.62200420238929478822898567012, 0,
1.62200420238929478822898567012, 2.37310639242355687365933068911, 3.43690765512602713424874015135, 4.36321181390494933576559479456, 5.49779049265856586992197095326, 6.23090654536310873399879144281, 6.96190608617453684757068784148, 8.099047436534461586869808272381, 8.730717806784415904478850157886