Properties

Label 2-1568-1.1-c3-0-110
Degree $2$
Conductor $1568$
Sign $-1$
Analytic cond. $92.5149$
Root an. cond. $9.61847$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.08·3-s + 9.08·5-s − 17.4·9-s + 34.1·11-s − 13.0·13-s + 28.0·15-s + 12.8·17-s − 139.·19-s − 21.3·23-s − 42.5·25-s − 137.·27-s + 142.·29-s − 192.·31-s + 105.·33-s − 115.·37-s − 40.3·39-s − 396.·41-s + 252.·43-s − 158.·45-s − 11.8·47-s + 39.5·51-s − 295.·53-s + 310.·55-s − 430.·57-s − 269.·59-s + 233.·61-s − 118.·65-s + ⋯
L(s)  = 1  + 0.593·3-s + 0.812·5-s − 0.648·9-s + 0.936·11-s − 0.279·13-s + 0.481·15-s + 0.183·17-s − 1.68·19-s − 0.193·23-s − 0.340·25-s − 0.977·27-s + 0.914·29-s − 1.11·31-s + 0.555·33-s − 0.514·37-s − 0.165·39-s − 1.51·41-s + 0.895·43-s − 0.526·45-s − 0.0366·47-s + 0.108·51-s − 0.765·53-s + 0.760·55-s − 1.00·57-s − 0.595·59-s + 0.490·61-s − 0.226·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1568\)    =    \(2^{5} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(92.5149\)
Root analytic conductor: \(9.61847\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1568,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 3.08T + 27T^{2} \)
5 \( 1 - 9.08T + 125T^{2} \)
11 \( 1 - 34.1T + 1.33e3T^{2} \)
13 \( 1 + 13.0T + 2.19e3T^{2} \)
17 \( 1 - 12.8T + 4.91e3T^{2} \)
19 \( 1 + 139.T + 6.85e3T^{2} \)
23 \( 1 + 21.3T + 1.21e4T^{2} \)
29 \( 1 - 142.T + 2.43e4T^{2} \)
31 \( 1 + 192.T + 2.97e4T^{2} \)
37 \( 1 + 115.T + 5.06e4T^{2} \)
41 \( 1 + 396.T + 6.89e4T^{2} \)
43 \( 1 - 252.T + 7.95e4T^{2} \)
47 \( 1 + 11.8T + 1.03e5T^{2} \)
53 \( 1 + 295.T + 1.48e5T^{2} \)
59 \( 1 + 269.T + 2.05e5T^{2} \)
61 \( 1 - 233.T + 2.26e5T^{2} \)
67 \( 1 - 975.T + 3.00e5T^{2} \)
71 \( 1 + 870.T + 3.57e5T^{2} \)
73 \( 1 + 391.T + 3.89e5T^{2} \)
79 \( 1 + 897.T + 4.93e5T^{2} \)
83 \( 1 - 658.T + 5.71e5T^{2} \)
89 \( 1 + 32.6T + 7.04e5T^{2} \)
97 \( 1 + 991.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.730717806784415904478850157886, −8.099047436534461586869808272381, −6.96190608617453684757068784148, −6.23090654536310873399879144281, −5.49779049265856586992197095326, −4.36321181390494933576559479456, −3.43690765512602713424874015135, −2.37310639242355687365933068911, −1.62200420238929478822898567012, 0, 1.62200420238929478822898567012, 2.37310639242355687365933068911, 3.43690765512602713424874015135, 4.36321181390494933576559479456, 5.49779049265856586992197095326, 6.23090654536310873399879144281, 6.96190608617453684757068784148, 8.099047436534461586869808272381, 8.730717806784415904478850157886

Graph of the $Z$-function along the critical line