Properties

Label 2-1568-4.3-c2-0-58
Degree $2$
Conductor $1568$
Sign $0.707 + 0.707i$
Analytic cond. $42.7249$
Root an. cond. $6.53642$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.76i·3-s + 8.20·5-s + 5.87·9-s + 10.5i·11-s + 5.87·13-s − 14.5i·15-s − 27.0·17-s − 12.3i·19-s − 41.9i·23-s + 42.2·25-s − 26.3i·27-s + 36.4·29-s + 7.64i·31-s + 18.5·33-s + 7.25·37-s + ⋯
L(s)  = 1  − 0.589i·3-s + 1.64·5-s + 0.652·9-s + 0.955i·11-s + 0.451·13-s − 0.967i·15-s − 1.58·17-s − 0.647i·19-s − 1.82i·23-s + 1.69·25-s − 0.974i·27-s + 1.25·29-s + 0.246i·31-s + 0.563·33-s + 0.196·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1568\)    =    \(2^{5} \cdot 7^{2}\)
Sign: $0.707 + 0.707i$
Analytic conductor: \(42.7249\)
Root analytic conductor: \(6.53642\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{1568} (1471, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1568,\ (\ :1),\ 0.707 + 0.707i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(3.045578468\)
\(L(\frac12)\) \(\approx\) \(3.045578468\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 1.76iT - 9T^{2} \)
5 \( 1 - 8.20T + 25T^{2} \)
11 \( 1 - 10.5iT - 121T^{2} \)
13 \( 1 - 5.87T + 169T^{2} \)
17 \( 1 + 27.0T + 289T^{2} \)
19 \( 1 + 12.3iT - 361T^{2} \)
23 \( 1 + 41.9iT - 529T^{2} \)
29 \( 1 - 36.4T + 841T^{2} \)
31 \( 1 - 7.64iT - 961T^{2} \)
37 \( 1 - 7.25T + 1.36e3T^{2} \)
41 \( 1 - 48.1T + 1.68e3T^{2} \)
43 \( 1 - 23.4iT - 1.84e3T^{2} \)
47 \( 1 + 59.1iT - 2.20e3T^{2} \)
53 \( 1 + 4.06T + 2.80e3T^{2} \)
59 \( 1 - 26.8iT - 3.48e3T^{2} \)
61 \( 1 + 0.370T + 3.72e3T^{2} \)
67 \( 1 + 2.08iT - 4.48e3T^{2} \)
71 \( 1 - 121. iT - 5.04e3T^{2} \)
73 \( 1 - 77.1T + 5.32e3T^{2} \)
79 \( 1 + 36.8iT - 6.24e3T^{2} \)
83 \( 1 + 98.2iT - 6.88e3T^{2} \)
89 \( 1 - 30.3T + 7.92e3T^{2} \)
97 \( 1 - 5.87T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.094285813998507357236575002265, −8.558597662253864207816641051285, −7.29282727677850763009994288039, −6.53287319144029525219152994477, −6.27156110662465781266578525644, −4.92235331727106541157958683393, −4.35705263875738290081507153844, −2.51090266755196304743512274390, −2.08782257801348456766684296828, −0.929372061749576014449283424632, 1.19510657100474108319101604816, 2.16937215793739853827687520722, 3.33731053959229610234761154586, 4.36818163070755102673846689061, 5.31157554167878777362921309554, 6.06084479943003344983399056721, 6.64405246450234180495243958290, 7.82096864853338927159491098879, 8.906374640329482227098231366409, 9.368358792333459014871381781358

Graph of the $Z$-function along the critical line