L(s) = 1 | + 4-s + 7-s + 1.73·11-s + 16-s − 1.73·17-s − 19-s − 1.73·23-s − 25-s + 28-s − 43-s + 1.73·44-s + 1.73·47-s + 61-s + 64-s − 1.73·68-s − 73-s − 76-s + 1.73·77-s − 1.73·92-s − 100-s − 1.73·101-s + 112-s − 1.73·119-s + ⋯ |
L(s) = 1 | + 4-s + 7-s + 1.73·11-s + 16-s − 1.73·17-s − 19-s − 1.73·23-s − 25-s + 28-s − 43-s + 1.73·44-s + 1.73·47-s + 61-s + 64-s − 1.73·68-s − 73-s − 76-s + 1.73·77-s − 1.73·92-s − 100-s − 1.73·101-s + 112-s − 1.73·119-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.548700859\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.548700859\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 - T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( 1 - T + T^{2} \) |
| 11 | \( 1 - 1.73T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + 1.73T + T^{2} \) |
| 23 | \( 1 + 1.73T + T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 - 1.73T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.665810550497869689288904253595, −8.699305756940304096565234984531, −8.120895673236630269391164907949, −7.10190288565279087104627082370, −6.45657761209922086487914873689, −5.79965151018111122626072051208, −4.40296315023034032603407102348, −3.86608318904438766214677956294, −2.24477997958511877895802242719, −1.67079199837300348335689397064,
1.67079199837300348335689397064, 2.24477997958511877895802242719, 3.86608318904438766214677956294, 4.40296315023034032603407102348, 5.79965151018111122626072051208, 6.45657761209922086487914873689, 7.10190288565279087104627082370, 8.120895673236630269391164907949, 8.699305756940304096565234984531, 9.665810550497869689288904253595