| L(s) = 1 | + (1.89 + 1.89i)2-s − 0.828i·4-s + (1.56 + 3.77i)5-s + (−11.5 + 27.9i)7-s + (16.7 − 16.7i)8-s + (−4.19 + 10.1i)10-s + (31.0 + 12.8i)11-s + 69.9i·13-s + (−74.8 + 30.9i)14-s + 56.6·16-s + (13.0 + 68.8i)17-s + (−60.7 − 60.7i)19-s + (3.13 − 1.29i)20-s + (34.4 + 83.2i)22-s + (117. + 48.6i)23-s + ⋯ |
| L(s) = 1 | + (0.669 + 0.669i)2-s − 0.103i·4-s + (0.140 + 0.338i)5-s + (−0.624 + 1.50i)7-s + (0.738 − 0.738i)8-s + (−0.132 + 0.320i)10-s + (0.851 + 0.352i)11-s + 1.49i·13-s + (−1.42 + 0.591i)14-s + 0.885·16-s + (0.185 + 0.982i)17-s + (−0.733 − 0.733i)19-s + (0.0349 − 0.0144i)20-s + (0.334 + 0.806i)22-s + (1.06 + 0.440i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.139 - 0.990i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.139 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(1.51505 + 1.74368i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.51505 + 1.74368i\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 17 | \( 1 + (-13.0 - 68.8i)T \) |
| good | 2 | \( 1 + (-1.89 - 1.89i)T + 8iT^{2} \) |
| 5 | \( 1 + (-1.56 - 3.77i)T + (-88.3 + 88.3i)T^{2} \) |
| 7 | \( 1 + (11.5 - 27.9i)T + (-242. - 242. i)T^{2} \) |
| 11 | \( 1 + (-31.0 - 12.8i)T + (941. + 941. i)T^{2} \) |
| 13 | \( 1 - 69.9iT - 2.19e3T^{2} \) |
| 19 | \( 1 + (60.7 + 60.7i)T + 6.85e3iT^{2} \) |
| 23 | \( 1 + (-117. - 48.6i)T + (8.60e3 + 8.60e3i)T^{2} \) |
| 29 | \( 1 + (46.0 + 111. i)T + (-1.72e4 + 1.72e4i)T^{2} \) |
| 31 | \( 1 + (208. - 86.2i)T + (2.10e4 - 2.10e4i)T^{2} \) |
| 37 | \( 1 + (60.7 - 25.1i)T + (3.58e4 - 3.58e4i)T^{2} \) |
| 41 | \( 1 + (-4.51 + 10.9i)T + (-4.87e4 - 4.87e4i)T^{2} \) |
| 43 | \( 1 + (-180. + 180. i)T - 7.95e4iT^{2} \) |
| 47 | \( 1 + 478. iT - 1.03e5T^{2} \) |
| 53 | \( 1 + (-187. - 187. i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-24.4 + 24.4i)T - 2.05e5iT^{2} \) |
| 61 | \( 1 + (13.9 - 33.5i)T + (-1.60e5 - 1.60e5i)T^{2} \) |
| 67 | \( 1 - 594.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-794. + 328. i)T + (2.53e5 - 2.53e5i)T^{2} \) |
| 73 | \( 1 + (172. + 416. i)T + (-2.75e5 + 2.75e5i)T^{2} \) |
| 79 | \( 1 + (-993. - 411. i)T + (3.48e5 + 3.48e5i)T^{2} \) |
| 83 | \( 1 + (68.2 + 68.2i)T + 5.71e5iT^{2} \) |
| 89 | \( 1 + 431. iT - 7.04e5T^{2} \) |
| 97 | \( 1 + (-192. - 463. i)T + (-6.45e5 + 6.45e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.86713694997582717229425145504, −12.04693343822682652175130801300, −10.83801380777117829509786237917, −9.488073191035635505245823325461, −8.826495077727302047650508335277, −6.89113515010990314421033514733, −6.39002905536065681954342245014, −5.26931445745528192602859520012, −3.91096877795897271883964752520, −2.03841539656893198224864211687,
0.972207518731993740981186619248, 3.10996472240906481040231046522, 3.99363173202378377411972753459, 5.29760295195378446903857269092, 6.91897620451861656977976574222, 7.933929254613539154890092666017, 9.325832938723423223042607202837, 10.58560995300952341146321532015, 11.15163282775111226712776229604, 12.68541218064030715624038974472