Properties

Label 2-153-153.7-c2-0-20
Degree $2$
Conductor $153$
Sign $0.999 + 0.00747i$
Analytic cond. $4.16894$
Root an. cond. $2.04180$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.434 + 0.566i)2-s + (2.71 + 1.28i)3-s + (0.903 − 3.37i)4-s + (1.70 − 1.49i)5-s + (0.451 + 2.09i)6-s + (−0.856 − 0.751i)7-s + (4.93 − 2.04i)8-s + (5.70 + 6.96i)9-s + (1.58 + 0.316i)10-s + (−0.488 − 7.45i)11-s + (6.77 − 7.98i)12-s + (−5.82 − 1.56i)13-s + (0.0531 − 0.811i)14-s + (6.55 − 1.86i)15-s + (−8.78 − 5.07i)16-s + (14.4 + 8.92i)17-s + ⋯
L(s)  = 1  + (0.217 + 0.283i)2-s + (0.903 + 0.427i)3-s + (0.225 − 0.842i)4-s + (0.341 − 0.299i)5-s + (0.0751 + 0.348i)6-s + (−0.122 − 0.107i)7-s + (0.617 − 0.255i)8-s + (0.633 + 0.773i)9-s + (0.158 + 0.0316i)10-s + (−0.0444 − 0.677i)11-s + (0.564 − 0.665i)12-s + (−0.447 − 0.120i)13-s + (0.00379 − 0.0579i)14-s + (0.436 − 0.124i)15-s + (−0.549 − 0.317i)16-s + (0.850 + 0.525i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.00747i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.00747i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $0.999 + 0.00747i$
Analytic conductor: \(4.16894\)
Root analytic conductor: \(2.04180\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1),\ 0.999 + 0.00747i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(2.31091 - 0.00863366i\)
\(L(\frac12)\) \(\approx\) \(2.31091 - 0.00863366i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-2.71 - 1.28i)T \)
17 \( 1 + (-14.4 - 8.92i)T \)
good2 \( 1 + (-0.434 - 0.566i)T + (-1.03 + 3.86i)T^{2} \)
5 \( 1 + (-1.70 + 1.49i)T + (3.26 - 24.7i)T^{2} \)
7 \( 1 + (0.856 + 0.751i)T + (6.39 + 48.5i)T^{2} \)
11 \( 1 + (0.488 + 7.45i)T + (-119. + 15.7i)T^{2} \)
13 \( 1 + (5.82 + 1.56i)T + (146. + 84.5i)T^{2} \)
19 \( 1 + (7.99 - 19.2i)T + (-255. - 255. i)T^{2} \)
23 \( 1 + (7.81 - 15.8i)T + (-322. - 419. i)T^{2} \)
29 \( 1 + (-9.18 + 27.0i)T + (-667. - 511. i)T^{2} \)
31 \( 1 + (-0.862 + 13.1i)T + (-952. - 125. i)T^{2} \)
37 \( 1 + (30.4 - 45.5i)T + (-523. - 1.26e3i)T^{2} \)
41 \( 1 + (22.9 - 7.78i)T + (1.33e3 - 1.02e3i)T^{2} \)
43 \( 1 + (24.4 + 3.21i)T + (1.78e3 + 478. i)T^{2} \)
47 \( 1 + (10.6 + 39.7i)T + (-1.91e3 + 1.10e3i)T^{2} \)
53 \( 1 + (-6.58 + 15.8i)T + (-1.98e3 - 1.98e3i)T^{2} \)
59 \( 1 + (-4.04 - 3.10i)T + (900. + 3.36e3i)T^{2} \)
61 \( 1 + (36.7 - 41.8i)T + (-485. - 3.68e3i)T^{2} \)
67 \( 1 + (37.7 - 21.7i)T + (2.24e3 - 3.88e3i)T^{2} \)
71 \( 1 + (-12.5 + 18.7i)T + (-1.92e3 - 4.65e3i)T^{2} \)
73 \( 1 + (-15.7 - 78.9i)T + (-4.92e3 + 2.03e3i)T^{2} \)
79 \( 1 + (7.63 + 116. i)T + (-6.18e3 + 814. i)T^{2} \)
83 \( 1 + (-95.4 + 73.2i)T + (1.78e3 - 6.65e3i)T^{2} \)
89 \( 1 + (39.2 + 39.2i)T + 7.92e3iT^{2} \)
97 \( 1 + (-33.7 + 99.4i)T + (-7.46e3 - 5.72e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20510118337090728200955845283, −11.70340884467470340657482158880, −10.22601162930978323206907747246, −9.939818200568865325795455654383, −8.611799718729489971778326869190, −7.55006985527144945791786634705, −6.08289459781741193764634281923, −5.04593371874367721919350798236, −3.56110425914053203023448433900, −1.73575959411510229784574734579, 2.16290664733802653744065084842, 3.15696403792188951566770901626, 4.61398900424394988510642366809, 6.67058535075576410678035067781, 7.44384936973138271291296361147, 8.525438832570191239607801923825, 9.588251519282994015816163161660, 10.74523727736625784493314012701, 12.26112112626540348003827108147, 12.52296088988584237863495200000

Graph of the $Z$-function along the critical line