L(s) = 1 | + (−0.707 − 0.707i)2-s − 0.999i·4-s + (−3.12 + 1.29i)5-s + (−3.41 − 1.41i)7-s + (−2.12 + 2.12i)8-s + (3.12 + 1.29i)10-s + (2 − 4.82i)11-s + 4.24i·13-s + (1.41 + 3.41i)14-s + 1.00·16-s + (−3 − 2.82i)17-s + (−2 − 2i)19-s + (1.29 + 3.12i)20-s + (−4.82 + 1.99i)22-s + (0.242 − 0.585i)23-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s − 0.499i·4-s + (−1.39 + 0.578i)5-s + (−1.29 − 0.534i)7-s + (−0.750 + 0.750i)8-s + (0.987 + 0.408i)10-s + (0.603 − 1.45i)11-s + 1.17i·13-s + (0.377 + 0.912i)14-s + 0.250·16-s + (−0.727 − 0.685i)17-s + (−0.458 − 0.458i)19-s + (0.289 + 0.697i)20-s + (−1.02 + 0.426i)22-s + (0.0505 − 0.122i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.998 - 0.0465i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.998 - 0.0465i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.00615451 + 0.264490i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.00615451 + 0.264490i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 17 | \( 1 + (3 + 2.82i)T \) |
good | 2 | \( 1 + (0.707 + 0.707i)T + 2iT^{2} \) |
| 5 | \( 1 + (3.12 - 1.29i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (3.41 + 1.41i)T + (4.94 + 4.94i)T^{2} \) |
| 11 | \( 1 + (-2 + 4.82i)T + (-7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 - 4.24iT - 13T^{2} \) |
| 19 | \( 1 + (2 + 2i)T + 19iT^{2} \) |
| 23 | \( 1 + (-0.242 + 0.585i)T + (-16.2 - 16.2i)T^{2} \) |
| 29 | \( 1 + (-4.12 + 1.70i)T + (20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 + (0.585 + 1.41i)T + (-21.9 + 21.9i)T^{2} \) |
| 37 | \( 1 + (0.949 + 2.29i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (4.12 + 1.70i)T + (28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-4 + 4i)T - 43iT^{2} \) |
| 47 | \( 1 - 2.82iT - 47T^{2} \) |
| 53 | \( 1 + (-0.171 - 0.171i)T + 53iT^{2} \) |
| 59 | \( 1 + (3.17 - 3.17i)T - 59iT^{2} \) |
| 61 | \( 1 + (11.5 + 4.77i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 - 4.48T + 67T^{2} \) |
| 71 | \( 1 + (0.242 + 0.585i)T + (-50.2 + 50.2i)T^{2} \) |
| 73 | \( 1 + (8.53 - 3.53i)T + (51.6 - 51.6i)T^{2} \) |
| 79 | \( 1 + (3.07 - 7.41i)T + (-55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (8.82 + 8.82i)T + 83iT^{2} \) |
| 89 | \( 1 - 10.5iT - 89T^{2} \) |
| 97 | \( 1 + (-8.94 + 3.70i)T + (68.5 - 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.03619601362614244926215051753, −11.29799500862676691433420594277, −10.66886982294961104509820568247, −9.393706291016180848516510970692, −8.608119803077201843988370886949, −7.01961783478029715834157480514, −6.27034520207657539988280631038, −4.17620480802856012854646608749, −2.99425463296512682010279144201, −0.29228803912476025806002370331,
3.26187294061099393285011693578, 4.39643020883773294382262801234, 6.33141493857099960021940037830, 7.32696802101076388397711225054, 8.292694143670151206448750447585, 9.102132262607757806679009351547, 10.20560669854388477309488665205, 11.86406107836548825271819553489, 12.55665491727654455822428684816, 12.90476524247373321346491304655