Properties

Label 2-153-17.16-c1-0-1
Degree $2$
Conductor $153$
Sign $-i$
Analytic cond. $1.22171$
Root an. cond. $1.10531$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s + 4.12i·5-s + 4.12i·11-s − 13-s + 4·16-s − 4.12i·17-s + 5·19-s − 8.24i·20-s + 4.12i·23-s − 12·25-s − 8.24i·29-s + 4.12i·41-s + 11·43-s − 8.24i·44-s + 7·49-s + ⋯
L(s)  = 1  − 4-s + 1.84i·5-s + 1.24i·11-s − 0.277·13-s + 16-s − 0.999i·17-s + 1.14·19-s − 1.84i·20-s + 0.859i·23-s − 2.40·25-s − 1.53i·29-s + 0.643i·41-s + 1.67·43-s − 1.24i·44-s + 49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-i$
Analytic conductor: \(1.22171\)
Root analytic conductor: \(1.10531\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (118, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.602549 + 0.602549i\)
\(L(\frac12)\) \(\approx\) \(0.602549 + 0.602549i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
17 \( 1 + 4.12iT \)
good2 \( 1 + 2T^{2} \)
5 \( 1 - 4.12iT - 5T^{2} \)
7 \( 1 - 7T^{2} \)
11 \( 1 - 4.12iT - 11T^{2} \)
13 \( 1 + T + 13T^{2} \)
19 \( 1 - 5T + 19T^{2} \)
23 \( 1 - 4.12iT - 23T^{2} \)
29 \( 1 + 8.24iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 37T^{2} \)
41 \( 1 - 4.12iT - 41T^{2} \)
43 \( 1 - 11T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 - 16.4iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 - 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 + 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.53775892560318106310910398985, −12.15041026925029490552105856456, −11.20302199190088921731449458790, −9.894078556665582167550913173828, −9.603643811261349093777838647689, −7.72407406514636345892186587754, −7.07083890770692774176396054804, −5.58995675492137965916450338420, −4.11086895909721362941669626921, −2.72129187565145507994058986416, 0.931369063223970506871556425315, 3.79280369284563752828600486905, 4.97419961464472443978675598258, 5.77231813928881131795249053068, 7.906924833504903118323478670203, 8.756006203078045934159160170532, 9.262694930711212273657472698289, 10.60469007478186818262450510920, 12.12811474436563540864673653366, 12.73771041920417490052266237753

Graph of the $Z$-function along the critical line