Properties

Label 4-1520e2-1.1-c0e2-0-6
Degree $4$
Conductor $2310400$
Sign $1$
Analytic cond. $0.575441$
Root an. cond. $0.870964$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 9-s + 19-s + 29-s + 2·41-s + 45-s − 2·49-s − 3·59-s − 61-s + 3·71-s − 3·79-s + 89-s + 95-s + 101-s − 109-s − 121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 5-s + 9-s + 19-s + 29-s + 2·41-s + 45-s − 2·49-s − 3·59-s − 61-s + 3·71-s − 3·79-s + 89-s + 95-s + 101-s − 109-s − 121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 145-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2310400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2310400\)    =    \(2^{8} \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(0.575441\)
Root analytic conductor: \(0.870964\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2310400,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.568561264\)
\(L(\frac12)\) \(\approx\) \(1.568561264\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
5$C_2$ \( 1 - T + T^{2} \)
19$C_2$ \( 1 - T + T^{2} \)
good3$C_2^2$ \( 1 - T^{2} + T^{4} \)
7$C_2$ \( ( 1 + T^{2} )^{2} \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
17$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
23$C_2^2$ \( 1 - T^{2} + T^{4} \)
29$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
31$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
37$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
41$C_2$ \( ( 1 - T + T^{2} )^{2} \)
43$C_2^2$ \( 1 - T^{2} + T^{4} \)
47$C_2^2$ \( 1 - T^{2} + T^{4} \)
53$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
59$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
61$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
67$C_2^2$ \( 1 - T^{2} + T^{4} \)
71$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
73$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
79$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
83$C_2$ \( ( 1 + T^{2} )^{2} \)
89$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 + T + T^{2} ) \)
97$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.735047761983297755658855819874, −9.603719215726221964601517760798, −9.054368325783819712787400774422, −8.964108096063200209655686556520, −8.051979499326616417730632641467, −7.917319741949913610651196121430, −7.50009745542313518702915859435, −7.06007525636684195699814796283, −6.42957784686699256988661388612, −6.34914479170518942619213079663, −5.79716182483802234035147837302, −5.38045434340819595387331934285, −4.75491875274002610518996741225, −4.59157677232805852620433497212, −3.97860389539106826538131796932, −3.33741877174442598533052928101, −2.87179984536598896766796647761, −2.30532721374326435567173393619, −1.56852212430036046910997973783, −1.19479593689736668105221996145, 1.19479593689736668105221996145, 1.56852212430036046910997973783, 2.30532721374326435567173393619, 2.87179984536598896766796647761, 3.33741877174442598533052928101, 3.97860389539106826538131796932, 4.59157677232805852620433497212, 4.75491875274002610518996741225, 5.38045434340819595387331934285, 5.79716182483802234035147837302, 6.34914479170518942619213079663, 6.42957784686699256988661388612, 7.06007525636684195699814796283, 7.50009745542313518702915859435, 7.917319741949913610651196121430, 8.051979499326616417730632641467, 8.964108096063200209655686556520, 9.054368325783819712787400774422, 9.603719215726221964601517760798, 9.735047761983297755658855819874

Graph of the $Z$-function along the critical line