L(s) = 1 | + 8.28·3-s + 2.38·5-s + 5.83·7-s + 41.6·9-s − 7.33·11-s + 55.6·13-s + 19.7·15-s − 10.0·17-s − 19·19-s + 48.3·21-s − 9.26·23-s − 119.·25-s + 121.·27-s − 83.9·29-s + 202.·31-s − 60.7·33-s + 13.9·35-s + 95.2·37-s + 460.·39-s − 25.9·41-s − 119.·43-s + 99.3·45-s + 467.·47-s − 308.·49-s − 83.1·51-s − 764.·53-s − 17.4·55-s + ⋯ |
L(s) = 1 | + 1.59·3-s + 0.213·5-s + 0.315·7-s + 1.54·9-s − 0.201·11-s + 1.18·13-s + 0.340·15-s − 0.143·17-s − 0.229·19-s + 0.502·21-s − 0.0839·23-s − 0.954·25-s + 0.866·27-s − 0.537·29-s + 1.17·31-s − 0.320·33-s + 0.0671·35-s + 0.423·37-s + 1.89·39-s − 0.0990·41-s − 0.424·43-s + 0.329·45-s + 1.45·47-s − 0.900·49-s − 0.228·51-s − 1.98·53-s − 0.0428·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.969669305\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.969669305\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + 19T \) |
good | 3 | \( 1 - 8.28T + 27T^{2} \) |
| 5 | \( 1 - 2.38T + 125T^{2} \) |
| 7 | \( 1 - 5.83T + 343T^{2} \) |
| 11 | \( 1 + 7.33T + 1.33e3T^{2} \) |
| 13 | \( 1 - 55.6T + 2.19e3T^{2} \) |
| 17 | \( 1 + 10.0T + 4.91e3T^{2} \) |
| 23 | \( 1 + 9.26T + 1.21e4T^{2} \) |
| 29 | \( 1 + 83.9T + 2.43e4T^{2} \) |
| 31 | \( 1 - 202.T + 2.97e4T^{2} \) |
| 37 | \( 1 - 95.2T + 5.06e4T^{2} \) |
| 41 | \( 1 + 25.9T + 6.89e4T^{2} \) |
| 43 | \( 1 + 119.T + 7.95e4T^{2} \) |
| 47 | \( 1 - 467.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 764.T + 1.48e5T^{2} \) |
| 59 | \( 1 - 69.1T + 2.05e5T^{2} \) |
| 61 | \( 1 + 398.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 243.T + 3.00e5T^{2} \) |
| 71 | \( 1 + 781.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 711.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 723.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 1.22e3T + 5.71e5T^{2} \) |
| 89 | \( 1 + 653.T + 7.04e5T^{2} \) |
| 97 | \( 1 - 1.69e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.92841308004607864900480020052, −11.48525012211842720404691026472, −10.27072457941866279038818464162, −9.229593960714259239072375817979, −8.398154727823522991177939744482, −7.60182277630560089360819483407, −6.10539155483320746322484006521, −4.31594450175867495401854232527, −3.10388420574793268211058311772, −1.73480076032561834910726100388,
1.73480076032561834910726100388, 3.10388420574793268211058311772, 4.31594450175867495401854232527, 6.10539155483320746322484006521, 7.60182277630560089360819483407, 8.398154727823522991177939744482, 9.229593960714259239072375817979, 10.27072457941866279038818464162, 11.48525012211842720404691026472, 12.92841308004607864900480020052