Properties

Label 2-152-1.1-c3-0-6
Degree $2$
Conductor $152$
Sign $1$
Analytic cond. $8.96829$
Root an. cond. $2.99471$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.28·3-s + 2.38·5-s + 5.83·7-s + 41.6·9-s − 7.33·11-s + 55.6·13-s + 19.7·15-s − 10.0·17-s − 19·19-s + 48.3·21-s − 9.26·23-s − 119.·25-s + 121.·27-s − 83.9·29-s + 202.·31-s − 60.7·33-s + 13.9·35-s + 95.2·37-s + 460.·39-s − 25.9·41-s − 119.·43-s + 99.3·45-s + 467.·47-s − 308.·49-s − 83.1·51-s − 764.·53-s − 17.4·55-s + ⋯
L(s)  = 1  + 1.59·3-s + 0.213·5-s + 0.315·7-s + 1.54·9-s − 0.201·11-s + 1.18·13-s + 0.340·15-s − 0.143·17-s − 0.229·19-s + 0.502·21-s − 0.0839·23-s − 0.954·25-s + 0.866·27-s − 0.537·29-s + 1.17·31-s − 0.320·33-s + 0.0671·35-s + 0.423·37-s + 1.89·39-s − 0.0990·41-s − 0.424·43-s + 0.329·45-s + 1.45·47-s − 0.900·49-s − 0.228·51-s − 1.98·53-s − 0.0428·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(152\)    =    \(2^{3} \cdot 19\)
Sign: $1$
Analytic conductor: \(8.96829\)
Root analytic conductor: \(2.99471\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 152,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.969669305\)
\(L(\frac12)\) \(\approx\) \(2.969669305\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + 19T \)
good3 \( 1 - 8.28T + 27T^{2} \)
5 \( 1 - 2.38T + 125T^{2} \)
7 \( 1 - 5.83T + 343T^{2} \)
11 \( 1 + 7.33T + 1.33e3T^{2} \)
13 \( 1 - 55.6T + 2.19e3T^{2} \)
17 \( 1 + 10.0T + 4.91e3T^{2} \)
23 \( 1 + 9.26T + 1.21e4T^{2} \)
29 \( 1 + 83.9T + 2.43e4T^{2} \)
31 \( 1 - 202.T + 2.97e4T^{2} \)
37 \( 1 - 95.2T + 5.06e4T^{2} \)
41 \( 1 + 25.9T + 6.89e4T^{2} \)
43 \( 1 + 119.T + 7.95e4T^{2} \)
47 \( 1 - 467.T + 1.03e5T^{2} \)
53 \( 1 + 764.T + 1.48e5T^{2} \)
59 \( 1 - 69.1T + 2.05e5T^{2} \)
61 \( 1 + 398.T + 2.26e5T^{2} \)
67 \( 1 + 243.T + 3.00e5T^{2} \)
71 \( 1 + 781.T + 3.57e5T^{2} \)
73 \( 1 + 711.T + 3.89e5T^{2} \)
79 \( 1 - 723.T + 4.93e5T^{2} \)
83 \( 1 + 1.22e3T + 5.71e5T^{2} \)
89 \( 1 + 653.T + 7.04e5T^{2} \)
97 \( 1 - 1.69e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.92841308004607864900480020052, −11.48525012211842720404691026472, −10.27072457941866279038818464162, −9.229593960714259239072375817979, −8.398154727823522991177939744482, −7.60182277630560089360819483407, −6.10539155483320746322484006521, −4.31594450175867495401854232527, −3.10388420574793268211058311772, −1.73480076032561834910726100388, 1.73480076032561834910726100388, 3.10388420574793268211058311772, 4.31594450175867495401854232527, 6.10539155483320746322484006521, 7.60182277630560089360819483407, 8.398154727823522991177939744482, 9.229593960714259239072375817979, 10.27072457941866279038818464162, 11.48525012211842720404691026472, 12.92841308004607864900480020052

Graph of the $Z$-function along the critical line