L(s) = 1 | + (0.560 − 3.17i)3-s + (−1.93 − 1.62i)5-s + (1.93 + 3.35i)7-s + (−6.96 − 2.53i)9-s + (1.17 − 2.03i)11-s + (0.145 + 0.824i)13-s + (−6.25 + 5.25i)15-s + (0.900 − 0.327i)17-s + (4.35 − 0.0632i)19-s + (11.7 − 4.28i)21-s + (3.34 − 2.80i)23-s + (0.245 + 1.39i)25-s + (−7.11 + 12.3i)27-s + (3.25 + 1.18i)29-s + (2.31 + 4.01i)31-s + ⋯ |
L(s) = 1 | + (0.323 − 1.83i)3-s + (−0.867 − 0.727i)5-s + (0.733 + 1.26i)7-s + (−2.32 − 0.844i)9-s + (0.353 − 0.612i)11-s + (0.0403 + 0.228i)13-s + (−1.61 + 1.35i)15-s + (0.218 − 0.0794i)17-s + (0.999 − 0.0144i)19-s + (2.56 − 0.934i)21-s + (0.697 − 0.585i)23-s + (0.0490 + 0.278i)25-s + (−1.36 + 2.37i)27-s + (0.605 + 0.220i)29-s + (0.416 + 0.721i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.291 + 0.956i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.291 + 0.956i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.667252 - 0.900691i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.667252 - 0.900691i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 19 | \( 1 + (-4.35 + 0.0632i)T \) |
good | 3 | \( 1 + (-0.560 + 3.17i)T + (-2.81 - 1.02i)T^{2} \) |
| 5 | \( 1 + (1.93 + 1.62i)T + (0.868 + 4.92i)T^{2} \) |
| 7 | \( 1 + (-1.93 - 3.35i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.17 + 2.03i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.145 - 0.824i)T + (-12.2 + 4.44i)T^{2} \) |
| 17 | \( 1 + (-0.900 + 0.327i)T + (13.0 - 10.9i)T^{2} \) |
| 23 | \( 1 + (-3.34 + 2.80i)T + (3.99 - 22.6i)T^{2} \) |
| 29 | \( 1 + (-3.25 - 1.18i)T + (22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (-2.31 - 4.01i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6.22T + 37T^{2} \) |
| 41 | \( 1 + (1.63 - 9.25i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 + (3.42 + 2.87i)T + (7.46 + 42.3i)T^{2} \) |
| 47 | \( 1 + (-6.73 - 2.45i)T + (36.0 + 30.2i)T^{2} \) |
| 53 | \( 1 + (3.24 - 2.72i)T + (9.20 - 52.1i)T^{2} \) |
| 59 | \( 1 + (7.92 - 2.88i)T + (45.1 - 37.9i)T^{2} \) |
| 61 | \( 1 + (4.89 - 4.10i)T + (10.5 - 60.0i)T^{2} \) |
| 67 | \( 1 + (-12.7 - 4.63i)T + (51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (6.53 + 5.48i)T + (12.3 + 69.9i)T^{2} \) |
| 73 | \( 1 + (-1.54 + 8.77i)T + (-68.5 - 24.9i)T^{2} \) |
| 79 | \( 1 + (0.647 - 3.67i)T + (-74.2 - 27.0i)T^{2} \) |
| 83 | \( 1 + (-1.23 - 2.13i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (0.396 + 2.24i)T + (-83.6 + 30.4i)T^{2} \) |
| 97 | \( 1 + (-0.166 + 0.0605i)T + (74.3 - 62.3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.33377195608791523706800408014, −12.10972732175207549241020033326, −11.30400935490095112699782286836, −8.908652955226260928138293068524, −8.465976767063164683909598699631, −7.59583741555025952116245521914, −6.36941495451777279764713634337, −5.12223883633110212299795092473, −2.92833934409841996085641645278, −1.27680565541480310475977999137,
3.33461707007631781166032241626, 4.11487083630316234365699608302, 5.13811659221697972602746431599, 7.19023234549246917322331940599, 8.120234486119367678518246516037, 9.458998386017950943139724784716, 10.36203406261550170435953400466, 11.00748291545936435141367151961, 11.80078240223992176404943167534, 13.81020027062054880136873414123