L(s) = 1 | + (−0.861 + 1.12i)2-s + (2.07 + 1.19i)3-s + (−0.515 − 1.93i)4-s + (0.418 + 0.241i)5-s + (−3.13 + 1.29i)6-s + 1.56i·7-s + (2.61 + 1.08i)8-s + (1.37 + 2.37i)9-s + (−0.631 + 0.261i)10-s + 1.24·11-s + (1.24 − 4.62i)12-s + (−1.80 − 3.11i)13-s + (−1.75 − 1.35i)14-s + (0.579 + 1.00i)15-s + (−3.46 + 1.99i)16-s + (−1.35 + 2.34i)17-s + ⋯ |
L(s) = 1 | + (−0.609 + 0.792i)2-s + (1.19 + 0.692i)3-s + (−0.257 − 0.966i)4-s + (0.187 + 0.108i)5-s + (−1.27 + 0.528i)6-s + 0.592i·7-s + (0.923 + 0.384i)8-s + (0.457 + 0.793i)9-s + (−0.199 + 0.0825i)10-s + 0.374·11-s + (0.360 − 1.33i)12-s + (−0.499 − 0.864i)13-s + (−0.469 − 0.360i)14-s + (0.149 + 0.258i)15-s + (−0.867 + 0.497i)16-s + (−0.328 + 0.569i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0800 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0800 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.862409 + 0.795897i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.862409 + 0.795897i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.861 - 1.12i)T \) |
| 19 | \( 1 + (4.25 - 0.936i)T \) |
good | 3 | \( 1 + (-2.07 - 1.19i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-0.418 - 0.241i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 1.56iT - 7T^{2} \) |
| 11 | \( 1 - 1.24T + 11T^{2} \) |
| 13 | \( 1 + (1.80 + 3.11i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.35 - 2.34i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-5.52 + 3.19i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.695 - 1.20i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 4.86T + 31T^{2} \) |
| 37 | \( 1 + 10.9T + 37T^{2} \) |
| 41 | \( 1 + (-1.10 - 0.635i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.78 + 8.28i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-7.26 + 4.19i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.50 + 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.43 - 2.56i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (9.42 - 5.44i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.22 - 1.86i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (6.62 - 11.4i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (0.494 - 0.856i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.81 - 10.0i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 12.1T + 83T^{2} \) |
| 89 | \( 1 + (11.1 - 6.44i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.42 - 1.40i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.68894439085148302380884273041, −12.38111760648545964845646475732, −10.60521884019673539032893846841, −9.985841026901256353091264576403, −8.684806109453806415710188126243, −8.562541161740095735898955845925, −7.04957763348173353474020974324, −5.71838883723701062648017048035, −4.27774189859978822029536305287, −2.48479740555548000941920239961,
1.66499982697303474609631298976, 2.98180212203831774105144511836, 4.40433265452059933415798184697, 6.92134896771958871245833616475, 7.63332616454816294975991908639, 8.885019186022397962574157685166, 9.357864621755484694695757502968, 10.68998847855759838580873508494, 11.77223487936364274189654072536, 12.85489142173347694901376076475