L(s) = 1 | + (−0.135 − 1.40i)2-s − 1.70i·3-s + (−1.96 + 0.381i)4-s − 1.66i·5-s + (−2.40 + 0.231i)6-s − 1.99·7-s + (0.802 + 2.71i)8-s + 0.0874·9-s + (−2.33 + 0.225i)10-s + 2.08i·11-s + (0.650 + 3.35i)12-s − 4.77i·13-s + (0.270 + 2.80i)14-s − 2.83·15-s + (3.70 − 1.49i)16-s + 2.10·17-s + ⋯ |
L(s) = 1 | + (−0.0958 − 0.995i)2-s − 0.985i·3-s + (−0.981 + 0.190i)4-s − 0.743i·5-s + (−0.980 + 0.0943i)6-s − 0.754·7-s + (0.283 + 0.958i)8-s + 0.0291·9-s + (−0.739 + 0.0712i)10-s + 0.629i·11-s + (0.187 + 0.967i)12-s − 1.32i·13-s + (0.0722 + 0.750i)14-s − 0.732·15-s + (0.927 − 0.374i)16-s + 0.510·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.958 + 0.283i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.958 + 0.283i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.128510 - 0.886714i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.128510 - 0.886714i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.135 + 1.40i)T \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 + 1.70iT - 3T^{2} \) |
| 5 | \( 1 + 1.66iT - 5T^{2} \) |
| 7 | \( 1 + 1.99T + 7T^{2} \) |
| 11 | \( 1 - 2.08iT - 11T^{2} \) |
| 13 | \( 1 + 4.77iT - 13T^{2} \) |
| 17 | \( 1 - 2.10T + 17T^{2} \) |
| 23 | \( 1 + 4.84T + 23T^{2} \) |
| 29 | \( 1 - 0.695iT - 29T^{2} \) |
| 31 | \( 1 - 9.77T + 31T^{2} \) |
| 37 | \( 1 - 0.0772iT - 37T^{2} \) |
| 41 | \( 1 - 10.7T + 41T^{2} \) |
| 43 | \( 1 + 1.43iT - 43T^{2} \) |
| 47 | \( 1 + 2.88T + 47T^{2} \) |
| 53 | \( 1 - 9.00iT - 53T^{2} \) |
| 59 | \( 1 - 11.5iT - 59T^{2} \) |
| 61 | \( 1 - 8.82iT - 61T^{2} \) |
| 67 | \( 1 + 1.27iT - 67T^{2} \) |
| 71 | \( 1 + 4.66T + 71T^{2} \) |
| 73 | \( 1 - 4.44T + 73T^{2} \) |
| 79 | \( 1 - 1.10T + 79T^{2} \) |
| 83 | \( 1 + 2.47iT - 83T^{2} \) |
| 89 | \( 1 + 15.8T + 89T^{2} \) |
| 97 | \( 1 + 13.9T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.57314417835821991304890755675, −11.96789655968895958369669590526, −10.40971152337105292383642531328, −9.669768835662341723189480379936, −8.405148340340109822565640807436, −7.48647692514357011727311061396, −5.90026472858020964273616642257, −4.43735686766840001434717874712, −2.74923909236795286168599604780, −1.01220196122543408428068787677,
3.47366888083275812214273162905, 4.56335786290473790875656558236, 6.08134108863639513494537001072, 6.88680764295629176854684557835, 8.264388107901841495113861483100, 9.541021529183454606644273924114, 9.989626710965967396766582290239, 11.18444676812705650244048228540, 12.63775376580085887335316198186, 13.92546609693196834743634739156