L(s) = 1 | + (−0.836 − 1.14i)2-s + 3.13i·3-s + (−0.601 + 1.90i)4-s − 0.594i·5-s + (3.57 − 2.62i)6-s − 3.48·7-s + (2.67 − 0.908i)8-s − 6.83·9-s + (−0.677 + 0.496i)10-s + 4.83i·11-s + (−5.98 − 1.88i)12-s + 0.215i·13-s + (2.91 + 3.97i)14-s + 1.86·15-s + (−3.27 − 2.29i)16-s + 1.29·17-s + ⋯ |
L(s) = 1 | + (−0.591 − 0.806i)2-s + 1.81i·3-s + (−0.300 + 0.953i)4-s − 0.265i·5-s + (1.46 − 1.07i)6-s − 1.31·7-s + (0.946 − 0.321i)8-s − 2.27·9-s + (−0.214 + 0.157i)10-s + 1.45i·11-s + (−1.72 − 0.544i)12-s + 0.0597i·13-s + (0.779 + 1.06i)14-s + 0.481·15-s + (−0.819 − 0.573i)16-s + 0.314·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.321 - 0.946i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.321 - 0.946i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.349360 + 0.487474i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.349360 + 0.487474i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.836 + 1.14i)T \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 - 3.13iT - 3T^{2} \) |
| 5 | \( 1 + 0.594iT - 5T^{2} \) |
| 7 | \( 1 + 3.48T + 7T^{2} \) |
| 11 | \( 1 - 4.83iT - 11T^{2} \) |
| 13 | \( 1 - 0.215iT - 13T^{2} \) |
| 17 | \( 1 - 1.29T + 17T^{2} \) |
| 23 | \( 1 - 4.52T + 23T^{2} \) |
| 29 | \( 1 - 9.41iT - 29T^{2} \) |
| 31 | \( 1 + 1.22T + 31T^{2} \) |
| 37 | \( 1 + 5.62iT - 37T^{2} \) |
| 41 | \( 1 + 0.450T + 41T^{2} \) |
| 43 | \( 1 + 0.794iT - 43T^{2} \) |
| 47 | \( 1 - 12.1T + 47T^{2} \) |
| 53 | \( 1 + 2.56iT - 53T^{2} \) |
| 59 | \( 1 + 2.75iT - 59T^{2} \) |
| 61 | \( 1 - 7.76iT - 61T^{2} \) |
| 67 | \( 1 + 4.11iT - 67T^{2} \) |
| 71 | \( 1 + 7.82T + 71T^{2} \) |
| 73 | \( 1 - 3.08T + 73T^{2} \) |
| 79 | \( 1 + 10.0T + 79T^{2} \) |
| 83 | \( 1 - 11.6iT - 83T^{2} \) |
| 89 | \( 1 - 13.7T + 89T^{2} \) |
| 97 | \( 1 - 2.08T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.90336569684543100016339315115, −12.20255608223847819878301343460, −10.80925973155525584119392886843, −10.21399535915807316306328720178, −9.365149259213616113809080007751, −8.895676213887488604267746532477, −7.10170875296083044785790003380, −5.14251561103758334636374019504, −4.02449658346951190132811066181, −2.96289491803091372956333676219,
0.71644535900500256772558095458, 2.89171658228689230911127777542, 5.78464516645214554651804505589, 6.42657762674701417407221137817, 7.25205708064039865705391481566, 8.289796641651220211782637726166, 9.202699945305935602128747998538, 10.66058561528742894861105192135, 11.78253807888632868636753658044, 13.10440533774851807962495693044