L(s) = 1 | + (−1.37 − 0.340i)2-s − 2.95i·3-s + (1.76 + 0.935i)4-s − 2.13i·5-s + (−1.00 + 4.05i)6-s + 3.29·7-s + (−2.10 − 1.88i)8-s − 5.71·9-s + (−0.727 + 2.93i)10-s + 3.71i·11-s + (2.75 − 5.21i)12-s − 2.32i·13-s + (−4.52 − 1.12i)14-s − 6.30·15-s + (2.25 + 3.30i)16-s − 6.48·17-s + ⋯ |
L(s) = 1 | + (−0.970 − 0.240i)2-s − 1.70i·3-s + (0.883 + 0.467i)4-s − 0.954i·5-s + (−0.410 + 1.65i)6-s + 1.24·7-s + (−0.745 − 0.666i)8-s − 1.90·9-s + (−0.229 + 0.926i)10-s + 1.11i·11-s + (0.796 − 1.50i)12-s − 0.645i·13-s + (−1.20 − 0.299i)14-s − 1.62·15-s + (0.562 + 0.826i)16-s − 1.57·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.666 + 0.745i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.666 + 0.745i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.319865 - 0.715223i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.319865 - 0.715223i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.37 + 0.340i)T \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 + 2.95iT - 3T^{2} \) |
| 5 | \( 1 + 2.13iT - 5T^{2} \) |
| 7 | \( 1 - 3.29T + 7T^{2} \) |
| 11 | \( 1 - 3.71iT - 11T^{2} \) |
| 13 | \( 1 + 2.32iT - 13T^{2} \) |
| 17 | \( 1 + 6.48T + 17T^{2} \) |
| 23 | \( 1 - 7.32T + 23T^{2} \) |
| 29 | \( 1 - 2.59iT - 29T^{2} \) |
| 31 | \( 1 + 1.34T + 31T^{2} \) |
| 37 | \( 1 - 3.72iT - 37T^{2} \) |
| 41 | \( 1 - 6.52T + 41T^{2} \) |
| 43 | \( 1 - 1.97iT - 43T^{2} \) |
| 47 | \( 1 - 5.45T + 47T^{2} \) |
| 53 | \( 1 + 4.98iT - 53T^{2} \) |
| 59 | \( 1 + 9.67iT - 59T^{2} \) |
| 61 | \( 1 + 8.15iT - 61T^{2} \) |
| 67 | \( 1 - 0.524iT - 67T^{2} \) |
| 71 | \( 1 - 7.17T + 71T^{2} \) |
| 73 | \( 1 + 6.33T + 73T^{2} \) |
| 79 | \( 1 + 8.75T + 79T^{2} \) |
| 83 | \( 1 - 7.74iT - 83T^{2} \) |
| 89 | \( 1 + 1.04T + 89T^{2} \) |
| 97 | \( 1 + 0.117T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.72363984479850531788150847157, −11.66517573519543105559227542927, −10.86884156276505503883212450782, −9.129315130546640986797460690220, −8.348039682565060900349992146676, −7.55134339678654027225368003027, −6.65818131484262680040020965325, −4.97919659711942995010298100627, −2.25104613418163899567233956431, −1.16657140684239661570957978392,
2.75629307518976522902126641723, 4.43485219417660862855561285787, 5.75996905797368841582008312275, 7.14301192515483624549686737267, 8.663485546271885389696730488462, 9.108112932187324377533644575775, 10.50310187869545415788050583830, 11.11390272329145661545143480805, 11.35067875003436018431033243982, 13.91686206128075850927640301389