L(s) = 1 | + (1.33 + 0.466i)2-s − 0.579i·3-s + (1.56 + 1.24i)4-s + 2.10i·5-s + (0.269 − 0.773i)6-s − 2.73·7-s + (1.50 + 2.39i)8-s + 2.66·9-s + (−0.983 + 2.81i)10-s − 4.66i·11-s + (0.720 − 0.906i)12-s − 4.47i·13-s + (−3.65 − 1.27i)14-s + 1.22·15-s + (0.900 + 3.89i)16-s − 6.85·17-s + ⋯ |
L(s) = 1 | + (0.944 + 0.329i)2-s − 0.334i·3-s + (0.782 + 0.622i)4-s + 0.943i·5-s + (0.110 − 0.315i)6-s − 1.03·7-s + (0.533 + 0.845i)8-s + 0.888·9-s + (−0.310 + 0.890i)10-s − 1.40i·11-s + (0.208 − 0.261i)12-s − 1.24i·13-s + (−0.975 − 0.340i)14-s + 0.315·15-s + (0.225 + 0.974i)16-s − 1.66·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.845 - 0.533i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.845 - 0.533i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.70219 + 0.492288i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.70219 + 0.492288i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.33 - 0.466i)T \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 + 0.579iT - 3T^{2} \) |
| 5 | \( 1 - 2.10iT - 5T^{2} \) |
| 7 | \( 1 + 2.73T + 7T^{2} \) |
| 11 | \( 1 + 4.66iT - 11T^{2} \) |
| 13 | \( 1 + 4.47iT - 13T^{2} \) |
| 17 | \( 1 + 6.85T + 17T^{2} \) |
| 23 | \( 1 + 1.20T + 23T^{2} \) |
| 29 | \( 1 - 9.57iT - 29T^{2} \) |
| 31 | \( 1 + 5.35T + 31T^{2} \) |
| 37 | \( 1 + 1.09iT - 37T^{2} \) |
| 41 | \( 1 - 7.33T + 41T^{2} \) |
| 43 | \( 1 + 7.64iT - 43T^{2} \) |
| 47 | \( 1 - 7.56T + 47T^{2} \) |
| 53 | \( 1 + 3.11iT - 53T^{2} \) |
| 59 | \( 1 - 10.2iT - 59T^{2} \) |
| 61 | \( 1 + 0.722iT - 61T^{2} \) |
| 67 | \( 1 - 6.13iT - 67T^{2} \) |
| 71 | \( 1 - 4.62T + 71T^{2} \) |
| 73 | \( 1 + 6.19T + 73T^{2} \) |
| 79 | \( 1 + 3.26T + 79T^{2} \) |
| 83 | \( 1 - 8.97iT - 83T^{2} \) |
| 89 | \( 1 - 0.620T + 89T^{2} \) |
| 97 | \( 1 + 1.67T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.10296106919563050751073051958, −12.51855769886047068389177731425, −11.02399075334968334390684592819, −10.49625037531145473595243894834, −8.754565049937780458586214253989, −7.33034853861619079828541511975, −6.62265688521618533207421365538, −5.64985062163604890693457449521, −3.79601122281903407543512973027, −2.77437871939406430210849309083,
2.07194012362618841419490790404, 4.19873851804973751801403548906, 4.61664797569637005150615373509, 6.34151011513925337699953367823, 7.22344986821642834468081326907, 9.298317082890285861452051885819, 9.734262121853649247645371098621, 11.05768725311309436063408139848, 12.25249718533183788903043353689, 12.88281377544513619220192896670