L(s) = 1 | + (1.09 + 0.889i)2-s − 2.32i·3-s + (0.418 + 1.95i)4-s − 3.13i·5-s + (2.07 − 2.56i)6-s − 0.535·7-s + (−1.27 + 2.52i)8-s − 2.42·9-s + (2.79 − 3.45i)10-s + 0.425i·11-s + (4.55 − 0.975i)12-s + 6.65i·13-s + (−0.589 − 0.476i)14-s − 7.31·15-s + (−3.64 + 1.63i)16-s + 7.33·17-s + ⋯ |
L(s) = 1 | + (0.777 + 0.628i)2-s − 1.34i·3-s + (0.209 + 0.977i)4-s − 1.40i·5-s + (0.845 − 1.04i)6-s − 0.202·7-s + (−0.451 + 0.892i)8-s − 0.808·9-s + (0.882 − 1.09i)10-s + 0.128i·11-s + (1.31 − 0.281i)12-s + 1.84i·13-s + (−0.157 − 0.127i)14-s − 1.88·15-s + (−0.912 + 0.409i)16-s + 1.77·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.892 + 0.451i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.892 + 0.451i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.56268 - 0.373298i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56268 - 0.373298i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.09 - 0.889i)T \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 + 2.32iT - 3T^{2} \) |
| 5 | \( 1 + 3.13iT - 5T^{2} \) |
| 7 | \( 1 + 0.535T + 7T^{2} \) |
| 11 | \( 1 - 0.425iT - 11T^{2} \) |
| 13 | \( 1 - 6.65iT - 13T^{2} \) |
| 17 | \( 1 - 7.33T + 17T^{2} \) |
| 23 | \( 1 + 5.90T + 23T^{2} \) |
| 29 | \( 1 - 0.837iT - 29T^{2} \) |
| 31 | \( 1 + 3.16T + 31T^{2} \) |
| 37 | \( 1 + 3.49iT - 37T^{2} \) |
| 41 | \( 1 + 0.123T + 41T^{2} \) |
| 43 | \( 1 + 5.39iT - 43T^{2} \) |
| 47 | \( 1 + 2.02T + 47T^{2} \) |
| 53 | \( 1 - 5.82iT - 53T^{2} \) |
| 59 | \( 1 + 5.56iT - 59T^{2} \) |
| 61 | \( 1 + 6.99iT - 61T^{2} \) |
| 67 | \( 1 - 12.3iT - 67T^{2} \) |
| 71 | \( 1 - 12.1T + 71T^{2} \) |
| 73 | \( 1 + 6.99T + 73T^{2} \) |
| 79 | \( 1 - 2.07T + 79T^{2} \) |
| 83 | \( 1 - 11.8iT - 83T^{2} \) |
| 89 | \( 1 - 13.7T + 89T^{2} \) |
| 97 | \( 1 - 0.801T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.82288174002903814324707004355, −12.28531874559828336575279923249, −11.71479304650164641438357063042, −9.481657296868717001534053550526, −8.358780889100030149303973757183, −7.52433036905973346575589863793, −6.45766753728402549368000361772, −5.37437476092983389860247030998, −4.02133115179029488749776409348, −1.77424552184790539447964079363,
3.02581813848704798331632236622, 3.60142182447235088395660189524, 5.19798818469485790370357639365, 6.15545298036794654929047130583, 7.75880747481431095415227548801, 9.711162579858390525191769012331, 10.26142514170165694289134071556, 10.79009708575861360061766901886, 11.89279436518596007918744037654, 13.08467998224796132644814198585