L(s) = 1 | + (0.456 + 1.33i)2-s − 2.09i·3-s + (−1.58 + 1.22i)4-s + 3.36i·5-s + (2.80 − 0.956i)6-s + 4.47·7-s + (−2.35 − 1.56i)8-s − 1.39·9-s + (−4.50 + 1.53i)10-s + 0.608i·11-s + (2.56 + 3.31i)12-s − 1.03i·13-s + (2.04 + 5.98i)14-s + 7.05·15-s + (1.01 − 3.86i)16-s − 3.06·17-s + ⋯ |
L(s) = 1 | + (0.322 + 0.946i)2-s − 1.20i·3-s + (−0.791 + 0.610i)4-s + 1.50i·5-s + (1.14 − 0.390i)6-s + 1.68·7-s + (−0.833 − 0.552i)8-s − 0.463·9-s + (−1.42 + 0.486i)10-s + 0.183i·11-s + (0.739 + 0.957i)12-s − 0.288i·13-s + (0.545 + 1.59i)14-s + 1.82·15-s + (0.253 − 0.967i)16-s − 0.743·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.552 - 0.833i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.552 - 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.17378 + 0.630568i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.17378 + 0.630568i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.456 - 1.33i)T \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 + 2.09iT - 3T^{2} \) |
| 5 | \( 1 - 3.36iT - 5T^{2} \) |
| 7 | \( 1 - 4.47T + 7T^{2} \) |
| 11 | \( 1 - 0.608iT - 11T^{2} \) |
| 13 | \( 1 + 1.03iT - 13T^{2} \) |
| 17 | \( 1 + 3.06T + 17T^{2} \) |
| 23 | \( 1 + 8.50T + 23T^{2} \) |
| 29 | \( 1 + 7.27iT - 29T^{2} \) |
| 31 | \( 1 - 4.02T + 31T^{2} \) |
| 37 | \( 1 - 4.31iT - 37T^{2} \) |
| 41 | \( 1 + 4.15T + 41T^{2} \) |
| 43 | \( 1 + 6.27iT - 43T^{2} \) |
| 47 | \( 1 - 4.73T + 47T^{2} \) |
| 53 | \( 1 - 6.98iT - 53T^{2} \) |
| 59 | \( 1 + 2.64iT - 59T^{2} \) |
| 61 | \( 1 - 5.11iT - 61T^{2} \) |
| 67 | \( 1 + 2.62iT - 67T^{2} \) |
| 71 | \( 1 - 12.0T + 71T^{2} \) |
| 73 | \( 1 + 12.5T + 73T^{2} \) |
| 79 | \( 1 + 0.913T + 79T^{2} \) |
| 83 | \( 1 - 0.887iT - 83T^{2} \) |
| 89 | \( 1 + 7.61T + 89T^{2} \) |
| 97 | \( 1 + 5.93T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.76061751786548514496323960627, −12.18169587498596429638835207917, −11.45766253097143760982583531290, −10.17935961043155450737217953814, −8.312479572866939267949483442744, −7.69078327862456925370946978606, −6.86622585214902461954342256587, −5.92178838595648117535081549406, −4.30584053388723442114280554108, −2.30519157334385807502225078658,
1.66859414021996525581259853281, 4.08820969149664341881263681944, 4.68781424445195681441903770199, 5.47685915271131768664864908469, 8.253601566768449939070644681555, 8.875333602715582438451919624418, 9.890652515573930060390676082807, 10.91526066518763283989563608840, 11.71910784398227220778170685924, 12.62406445276576370905197452204