Properties

Label 2-1519-1.1-c3-0-176
Degree $2$
Conductor $1519$
Sign $-1$
Analytic cond. $89.6239$
Root an. cond. $9.46699$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.38·2-s + 5.26·3-s + 3.48·4-s − 18.6·5-s − 17.8·6-s + 15.2·8-s + 0.749·9-s + 63.0·10-s + 12.1·11-s + 18.3·12-s + 38.3·13-s − 98.0·15-s − 79.7·16-s − 43.6·17-s − 2.54·18-s + 151.·19-s − 64.9·20-s − 41.1·22-s − 174.·23-s + 80.5·24-s + 221.·25-s − 130.·26-s − 138.·27-s − 135.·29-s + 332.·30-s − 31·31-s + 147.·32-s + ⋯
L(s)  = 1  − 1.19·2-s + 1.01·3-s + 0.436·4-s − 1.66·5-s − 1.21·6-s + 0.675·8-s + 0.0277·9-s + 1.99·10-s + 0.332·11-s + 0.442·12-s + 0.819·13-s − 1.68·15-s − 1.24·16-s − 0.622·17-s − 0.0332·18-s + 1.82·19-s − 0.725·20-s − 0.398·22-s − 1.58·23-s + 0.684·24-s + 1.76·25-s − 0.981·26-s − 0.985·27-s − 0.867·29-s + 2.02·30-s − 0.179·31-s + 0.817·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1519 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1519 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1519\)    =    \(7^{2} \cdot 31\)
Sign: $-1$
Analytic conductor: \(89.6239\)
Root analytic conductor: \(9.46699\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1519,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 \)
31 \( 1 + 31T \)
good2 \( 1 + 3.38T + 8T^{2} \)
3 \( 1 - 5.26T + 27T^{2} \)
5 \( 1 + 18.6T + 125T^{2} \)
11 \( 1 - 12.1T + 1.33e3T^{2} \)
13 \( 1 - 38.3T + 2.19e3T^{2} \)
17 \( 1 + 43.6T + 4.91e3T^{2} \)
19 \( 1 - 151.T + 6.85e3T^{2} \)
23 \( 1 + 174.T + 1.21e4T^{2} \)
29 \( 1 + 135.T + 2.43e4T^{2} \)
37 \( 1 - 129.T + 5.06e4T^{2} \)
41 \( 1 + 225.T + 6.89e4T^{2} \)
43 \( 1 + 63.2T + 7.95e4T^{2} \)
47 \( 1 - 183.T + 1.03e5T^{2} \)
53 \( 1 - 646.T + 1.48e5T^{2} \)
59 \( 1 - 674.T + 2.05e5T^{2} \)
61 \( 1 - 213.T + 2.26e5T^{2} \)
67 \( 1 - 557.T + 3.00e5T^{2} \)
71 \( 1 - 287.T + 3.57e5T^{2} \)
73 \( 1 - 803.T + 3.89e5T^{2} \)
79 \( 1 - 712.T + 4.93e5T^{2} \)
83 \( 1 - 179.T + 5.71e5T^{2} \)
89 \( 1 + 276.T + 7.04e5T^{2} \)
97 \( 1 + 942.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.539860008594880204343001465510, −8.111303760331849439764318877134, −7.56853160900617890340757927308, −6.81585114247620988256512645508, −5.33581511990751684872406435075, −3.87774301082182195739259420850, −3.75940878699230079570244582875, −2.35271731784175814903381484513, −1.05219446888726586278635231432, 0, 1.05219446888726586278635231432, 2.35271731784175814903381484513, 3.75940878699230079570244582875, 3.87774301082182195739259420850, 5.33581511990751684872406435075, 6.81585114247620988256512645508, 7.56853160900617890340757927308, 8.111303760331849439764318877134, 8.539860008594880204343001465510

Graph of the $Z$-function along the critical line