L(s) = 1 | − 2.76·5-s + (−1.21 − 2.34i)7-s + 2.41i·11-s + (0.0461 + 0.0266i)13-s + (1.79 − 3.11i)17-s + (3.96 − 2.29i)19-s − 0.106i·23-s + 2.66·25-s + (−6.57 + 3.79i)29-s + (−5.90 + 3.40i)31-s + (3.37 + 6.50i)35-s + (2.06 + 3.57i)37-s + (−0.838 + 1.45i)41-s + (1.74 + 3.01i)43-s + (−6.59 + 11.4i)47-s + ⋯ |
L(s) = 1 | − 1.23·5-s + (−0.460 − 0.887i)7-s + 0.729i·11-s + (0.0128 + 0.00739i)13-s + (0.435 − 0.755i)17-s + (0.910 − 0.525i)19-s − 0.0222i·23-s + 0.533·25-s + (−1.22 + 0.704i)29-s + (−1.06 + 0.612i)31-s + (0.570 + 1.09i)35-s + (0.338 + 0.587i)37-s + (−0.131 + 0.226i)41-s + (0.265 + 0.460i)43-s + (−0.962 + 1.66i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0761 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0761 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6410876073\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6410876073\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.21 + 2.34i)T \) |
good | 5 | \( 1 + 2.76T + 5T^{2} \) |
| 11 | \( 1 - 2.41iT - 11T^{2} \) |
| 13 | \( 1 + (-0.0461 - 0.0266i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.79 + 3.11i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.96 + 2.29i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 0.106iT - 23T^{2} \) |
| 29 | \( 1 + (6.57 - 3.79i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (5.90 - 3.40i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.06 - 3.57i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.838 - 1.45i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.74 - 3.01i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.59 - 11.4i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.27 - 3.04i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.72 - 8.18i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.29 - 1.32i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.09 - 12.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.40iT - 71T^{2} \) |
| 73 | \( 1 + (-5.54 - 3.19i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.11 - 3.65i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (6.86 + 11.8i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (5.71 + 9.90i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-14.3 + 8.28i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.668437387655281287374228792996, −8.960247128625690448482467058140, −7.75306649255509746502768789995, −7.39813456940976600140456611920, −6.77287681101987432066582446981, −5.42925771097217107809799274889, −4.51555961710508037116997295354, −3.73276998159757379058099942077, −2.91905998025191179941779085897, −1.14049144005668259876230130695,
0.29084566140185731343743116243, 2.08722962318531969016690705048, 3.55264204678051271293612187547, 3.73281422951865150630516081108, 5.29399046204204928759282208290, 5.84983459717147114564372236901, 6.91701721764262488256260116389, 7.85889673308664356860358488851, 8.302172767047673535729778351595, 9.230643970210821105942552102823