L(s) = 1 | − 4.11·5-s + (−2.54 + 0.711i)7-s − 5.82i·11-s + (−2.52 − 1.45i)13-s + (−1.58 + 2.73i)17-s + (0.722 − 0.417i)19-s + 7.09i·23-s + 11.9·25-s + (1.91 − 1.10i)29-s + (3.66 − 2.11i)31-s + (10.4 − 2.92i)35-s + (1.82 + 3.16i)37-s + (−2.04 + 3.54i)41-s + (0.155 + 0.269i)43-s + (−0.502 + 0.870i)47-s + ⋯ |
L(s) = 1 | − 1.84·5-s + (−0.963 + 0.269i)7-s − 1.75i·11-s + (−0.699 − 0.403i)13-s + (−0.383 + 0.664i)17-s + (0.165 − 0.0956i)19-s + 1.47i·23-s + 2.38·25-s + (0.355 − 0.205i)29-s + (0.658 − 0.380i)31-s + (1.77 − 0.495i)35-s + (0.300 + 0.519i)37-s + (−0.319 + 0.554i)41-s + (0.0237 + 0.0410i)43-s + (−0.0732 + 0.126i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.803 - 0.594i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.803 - 0.594i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6298328013\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6298328013\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.54 - 0.711i)T \) |
good | 5 | \( 1 + 4.11T + 5T^{2} \) |
| 11 | \( 1 + 5.82iT - 11T^{2} \) |
| 13 | \( 1 + (2.52 + 1.45i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (1.58 - 2.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.722 + 0.417i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 7.09iT - 23T^{2} \) |
| 29 | \( 1 + (-1.91 + 1.10i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.66 + 2.11i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.82 - 3.16i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (2.04 - 3.54i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.155 - 0.269i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.502 - 0.870i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.94 - 1.12i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.51 + 4.36i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.98 + 2.30i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.99 - 8.65i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 11.4iT - 71T^{2} \) |
| 73 | \( 1 + (3.04 + 1.76i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.579 + 1.00i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.57 - 13.1i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (4.82 + 8.35i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.06 + 2.92i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.477057022051465602189442943257, −8.509435000934240735751613363122, −8.088527669172762313527084632518, −7.24214321297696121503026086377, −6.35707079118504842813309762477, −5.47643777974278768485106751681, −4.29880332341285349752829015996, −3.43115891711152425346590166872, −2.93825458003065064355409261329, −0.70562592886710885183903190308,
0.41321759876375017429246869330, 2.41168163782665534248185889767, 3.43892409471280855720834608354, 4.48293696677527593728263685536, 4.72410608784488262220549061677, 6.50224548110038454568171816369, 7.15129679846272515568318464847, 7.53024410811210022854575291018, 8.571452842135776165241939552402, 9.384431369443727308261848003958