L(s) = 1 | + (1.59 + 2.76i)5-s + (−1.60 + 2.10i)7-s + (−4.75 − 2.74i)11-s − 6.96i·13-s + (−2.10 + 3.64i)17-s + (−5.72 + 3.30i)19-s + (−0.659 + 0.380i)23-s + (−2.60 + 4.50i)25-s − 4.20i·29-s + (−3.02 − 1.74i)31-s + (−8.38 − 1.06i)35-s + (−2.64 − 4.58i)37-s + 5.67·41-s − 3.39·43-s + (6.12 + 10.6i)47-s + ⋯ |
L(s) = 1 | + (0.714 + 1.23i)5-s + (−0.605 + 0.795i)7-s + (−1.43 − 0.827i)11-s − 1.93i·13-s + (−0.510 + 0.884i)17-s + (−1.31 + 0.758i)19-s + (−0.137 + 0.0794i)23-s + (−0.520 + 0.901i)25-s − 0.780i·29-s + (−0.543 − 0.313i)31-s + (−1.41 − 0.180i)35-s + (−0.435 − 0.753i)37-s + 0.886·41-s − 0.517·43-s + (0.893 + 1.54i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.866 + 0.500i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.866 + 0.500i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.07623234586\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.07623234586\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.60 - 2.10i)T \) |
good | 5 | \( 1 + (-1.59 - 2.76i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (4.75 + 2.74i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 6.96iT - 13T^{2} \) |
| 17 | \( 1 + (2.10 - 3.64i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.72 - 3.30i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.659 - 0.380i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 4.20iT - 29T^{2} \) |
| 31 | \( 1 + (3.02 + 1.74i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.64 + 4.58i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 5.67T + 41T^{2} \) |
| 43 | \( 1 + 3.39T + 43T^{2} \) |
| 47 | \( 1 + (-6.12 - 10.6i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.30 + 1.90i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-3.25 + 5.64i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.425 + 0.245i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.664 + 1.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 3.36iT - 71T^{2} \) |
| 73 | \( 1 + (11.8 + 6.83i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.27 + 7.39i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 7.45T + 83T^{2} \) |
| 89 | \( 1 + (0.817 + 1.41i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 10.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29357522910365767942328705134, −9.192562714384277781917188083562, −8.183524135181669887451567452436, −7.72496949910118096179783532792, −6.35900936384737968052992898013, −5.96264630582859792247366852357, −5.37258437300785157002827383592, −3.70956392914083394800069121015, −2.79889925097634396543047613976, −2.28372189816626534816241061263,
0.02694204584582885286388485527, 1.65073786066383727837186435971, 2.57821796994137133835654429856, 4.25151082269265092052287033905, 4.67787514467316417434286013498, 5.55690738401942478225819710985, 6.83469971236010402021688060418, 7.10020899081849318206996754957, 8.454160648224551658752427408353, 9.073726371358555479112476646936