L(s) = 1 | + (−0.766 − 0.642i)2-s + (0.866 + 0.5i)3-s + (0.173 + 0.984i)4-s + (0.642 + 0.233i)5-s + (−0.342 − 0.939i)6-s + (−0.173 + 0.984i)7-s + (0.500 − 0.866i)8-s + (0.499 + 0.866i)9-s + (−0.342 − 0.592i)10-s + (−0.342 + 0.939i)12-s + (1.32 − 1.11i)13-s + (0.766 − 0.642i)14-s + (0.439 + 0.524i)15-s + (−0.939 + 0.342i)16-s + (0.173 − 0.984i)18-s + (−0.984 + 1.70i)19-s + ⋯ |
L(s) = 1 | + (−0.766 − 0.642i)2-s + (0.866 + 0.5i)3-s + (0.173 + 0.984i)4-s + (0.642 + 0.233i)5-s + (−0.342 − 0.939i)6-s + (−0.173 + 0.984i)7-s + (0.500 − 0.866i)8-s + (0.499 + 0.866i)9-s + (−0.342 − 0.592i)10-s + (−0.342 + 0.939i)12-s + (1.32 − 1.11i)13-s + (0.766 − 0.642i)14-s + (0.439 + 0.524i)15-s + (−0.939 + 0.342i)16-s + (0.173 − 0.984i)18-s + (−0.984 + 1.70i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.153099500\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.153099500\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.766 + 0.642i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.173 - 0.984i)T \) |
good | 5 | \( 1 + (-0.642 - 0.233i)T + (0.766 + 0.642i)T^{2} \) |
| 11 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 13 | \( 1 + (-1.32 + 1.11i)T + (0.173 - 0.984i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.984 - 1.70i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.326 + 1.85i)T + (-0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (0.223 - 1.26i)T + (-0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 + 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.266 + 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (-1.32 - 1.11i)T + (0.173 + 0.984i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.782236912148851846402383637855, −8.863602580013889347368695488381, −8.384524459593586565204726890830, −7.88827254356435825516277221546, −6.43577049910179749151960058496, −5.79229740324147060254306533658, −4.33404214275609362332092582009, −3.42652134087575105262950619047, −2.57191074271456775492739513614, −1.77030166451733258046533239232,
1.24093645777323476920213081236, 2.06671495418735154106962551210, 3.59188180894419995581127553469, 4.58615808082370015589672376802, 5.90633339746986738169498162039, 6.63856562771562768456838237350, 7.20129982117782089345442265961, 8.027710948751004668335250477175, 8.934893301833354849922791968616, 9.288522485619064436206004972471