L(s) = 1 | + (0.939 − 0.342i)2-s + (0.866 + 0.5i)3-s + (0.766 − 0.642i)4-s + (0.342 + 1.93i)5-s + (0.984 + 0.173i)6-s + (−0.766 − 0.642i)7-s + (0.500 − 0.866i)8-s + (0.499 + 0.866i)9-s + (0.984 + 1.70i)10-s + (0.984 − 0.173i)12-s + (−1.62 − 0.592i)13-s + (−0.939 − 0.342i)14-s + (−0.673 + 1.85i)15-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)18-s + (0.642 − 1.11i)19-s + ⋯ |
L(s) = 1 | + (0.939 − 0.342i)2-s + (0.866 + 0.5i)3-s + (0.766 − 0.642i)4-s + (0.342 + 1.93i)5-s + (0.984 + 0.173i)6-s + (−0.766 − 0.642i)7-s + (0.500 − 0.866i)8-s + (0.499 + 0.866i)9-s + (0.984 + 1.70i)10-s + (0.984 − 0.173i)12-s + (−1.62 − 0.592i)13-s + (−0.939 − 0.342i)14-s + (−0.673 + 1.85i)15-s + (0.173 − 0.984i)16-s + (0.766 + 0.642i)18-s + (0.642 − 1.11i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.404662956\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.404662956\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.939 + 0.342i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (0.766 + 0.642i)T \) |
good | 5 | \( 1 + (-0.342 - 1.93i)T + (-0.939 + 0.342i)T^{2} \) |
| 11 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 13 | \( 1 + (1.62 + 0.592i)T + (0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.642 + 1.11i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 31 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (0.524 + 0.439i)T + (0.173 + 0.984i)T^{2} \) |
| 67 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 - 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-1.43 + 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (1.62 - 0.592i)T + (0.766 - 0.642i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.788177874426393533096756586725, −9.539117986252588293652274340210, −7.69577754686174650105969468326, −7.15465844218236917014670059842, −6.65635238686115830479551499206, −5.50166906589584644568729272199, −4.48650949402302713580477184581, −3.40547587770143503639932673827, −2.91378721451946261891682757203, −2.29407987741133748094483266886,
1.64138769600830376752152863568, 2.54295875971935912507878528737, 3.72148626139963056616502696368, 4.66032294720260173370064505812, 5.41356120076088139181917356027, 6.19648011039595040952791595061, 7.24893500274497615158763987629, 7.966167295055421539863418681705, 8.743449370710842083558591295522, 9.423894561128427828337162757425