Properties

Label 2-1500-5.4-c1-0-15
Degree $2$
Conductor $1500$
Sign $-1$
Analytic cond. $11.9775$
Root an. cond. $3.46086$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s − 3.23i·7-s − 9-s − 4·11-s − 4.47i·13-s − 0.145i·17-s + 6.38·19-s − 3.23·21-s + 4.61i·23-s + i·27-s − 5.70·29-s − 9.09·31-s + 4i·33-s + 4.76i·37-s − 4.47·39-s + ⋯
L(s)  = 1  − 0.577i·3-s − 1.22i·7-s − 0.333·9-s − 1.20·11-s − 1.24i·13-s − 0.0353i·17-s + 1.46·19-s − 0.706·21-s + 0.962i·23-s + 0.192i·27-s − 1.05·29-s − 1.63·31-s + 0.696i·33-s + 0.783i·37-s − 0.716·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1500 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1500 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1500\)    =    \(2^{2} \cdot 3 \cdot 5^{3}\)
Sign: $-1$
Analytic conductor: \(11.9775\)
Root analytic conductor: \(3.46086\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1500} (1249, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1500,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7793383694\)
\(L(\frac12)\) \(\approx\) \(0.7793383694\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 \)
good7 \( 1 + 3.23iT - 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 4.47iT - 13T^{2} \)
17 \( 1 + 0.145iT - 17T^{2} \)
19 \( 1 - 6.38T + 19T^{2} \)
23 \( 1 - 4.61iT - 23T^{2} \)
29 \( 1 + 5.70T + 29T^{2} \)
31 \( 1 + 9.09T + 31T^{2} \)
37 \( 1 - 4.76iT - 37T^{2} \)
41 \( 1 + 8.94T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 9.32iT - 47T^{2} \)
53 \( 1 - 10.0iT - 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 8.85T + 61T^{2} \)
67 \( 1 + 1.23iT - 67T^{2} \)
71 \( 1 - 4.47T + 71T^{2} \)
73 \( 1 + 0.291iT - 73T^{2} \)
79 \( 1 - 7.32T + 79T^{2} \)
83 \( 1 + 16.5iT - 83T^{2} \)
89 \( 1 + 1.70T + 89T^{2} \)
97 \( 1 - 0.763iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.073312940112563011720140683207, −7.87627406669751742601877483316, −7.59764125591555520968693310884, −6.93718358172465514601231246462, −5.54907378710557574318598347845, −5.22760653727360334231224755373, −3.71774914903571449539697336413, −3.01826727702045608959716860047, −1.57123549085851929615064040284, −0.29576730144582873109133683195, 1.96140504071777576560001307853, 2.87828246904884347626846971458, 3.93727990898993317422205845936, 5.16262754315861690654914414626, 5.45991521120101508321690148145, 6.57683041972446562344383350058, 7.57669605921977546480309442442, 8.409012793214130152860153260365, 9.282467111077722216248028050277, 9.589009670510456858071731059846

Graph of the $Z$-function along the critical line