| L(s) = 1 | − 64i·2-s + 729i·3-s − 4.09e3·4-s + 4.66e4·6-s + 2.63e5i·7-s + 2.62e5i·8-s − 5.31e5·9-s + 5.96e6·11-s − 2.98e6i·12-s + 3.07e7i·13-s + 1.68e7·14-s + 1.67e7·16-s + 1.42e8i·17-s + 3.40e7i·18-s − 2.89e8·19-s + ⋯ |
| L(s) = 1 | − 0.707i·2-s + 0.577i·3-s − 0.5·4-s + 0.408·6-s + 0.845i·7-s + 0.353i·8-s − 0.333·9-s + 1.01·11-s − 0.288i·12-s + 1.76i·13-s + 0.597·14-s + 0.250·16-s + 1.42i·17-s + 0.235i·18-s − 1.41·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 150 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(7)\) |
\(\approx\) |
\(1.517561650\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.517561650\) |
| \(L(\frac{15}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + 64iT \) |
| 3 | \( 1 - 729iT \) |
| 5 | \( 1 \) |
| good | 7 | \( 1 - 2.63e5iT - 9.68e10T^{2} \) |
| 11 | \( 1 - 5.96e6T + 3.45e13T^{2} \) |
| 13 | \( 1 - 3.07e7iT - 3.02e14T^{2} \) |
| 17 | \( 1 - 1.42e8iT - 9.90e15T^{2} \) |
| 19 | \( 1 + 2.89e8T + 4.20e16T^{2} \) |
| 23 | \( 1 - 9.85e8iT - 5.04e17T^{2} \) |
| 29 | \( 1 - 5.03e9T + 1.02e19T^{2} \) |
| 31 | \( 1 + 7.94e9T + 2.44e19T^{2} \) |
| 37 | \( 1 - 1.35e10iT - 2.43e20T^{2} \) |
| 41 | \( 1 - 1.86e10T + 9.25e20T^{2} \) |
| 43 | \( 1 + 3.33e10iT - 1.71e21T^{2} \) |
| 47 | \( 1 + 6.56e10iT - 5.46e21T^{2} \) |
| 53 | \( 1 - 2.49e11iT - 2.60e22T^{2} \) |
| 59 | \( 1 - 4.87e10T + 1.04e23T^{2} \) |
| 61 | \( 1 - 7.17e11T + 1.61e23T^{2} \) |
| 67 | \( 1 + 2.01e11iT - 5.48e23T^{2} \) |
| 71 | \( 1 - 8.72e11T + 1.16e24T^{2} \) |
| 73 | \( 1 - 1.74e12iT - 1.67e24T^{2} \) |
| 79 | \( 1 + 1.14e12T + 4.66e24T^{2} \) |
| 83 | \( 1 + 1.28e12iT - 8.87e24T^{2} \) |
| 89 | \( 1 + 6.53e12T + 2.19e25T^{2} \) |
| 97 | \( 1 + 1.16e13iT - 6.73e25T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13931802905050365358336667281, −10.03181943672460173220027115901, −9.019182165007068559665402515067, −8.583409572970383493347998268294, −6.73338593285059125252847134017, −5.71150374679172690303035326241, −4.32755033418447625059234556399, −3.73585943939500932467234651955, −2.23251761888813496246379419768, −1.46484143796707659905974421778,
0.35278812894125799970452229204, 0.896365769112155196958612095086, 2.56328244181267694896083834147, 3.88010913867326704877467938211, 5.02089492305847831549704528718, 6.26806494000300350396268595143, 7.03117991275684976723574970429, 7.966760507734308697685396545127, 8.886723945660477124132381214940, 10.15022964845765328646758346816