Properties

Label 4-150e2-1.1-c11e2-0-8
Degree $4$
Conductor $22500$
Sign $1$
Analytic cond. $13282.9$
Root an. cond. $10.7355$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.02e3·4-s − 5.90e4·9-s − 1.07e6·11-s + 1.04e6·16-s + 1.31e7·19-s − 2.57e6·29-s − 1.00e8·31-s + 6.04e7·36-s − 1.35e9·41-s + 1.10e9·44-s + 3.09e9·49-s + 4.39e9·59-s + 1.98e10·61-s − 1.07e9·64-s + 3.50e10·71-s − 1.35e10·76-s + 2.73e9·79-s + 3.48e9·81-s + 1.29e11·89-s + 6.36e10·99-s − 2.99e11·101-s − 9.03e10·109-s + 2.63e9·116-s + 2.99e11·121-s + 1.03e11·124-s + 127-s + 131-s + ⋯
L(s)  = 1  − 1/2·4-s − 1/3·9-s − 2.01·11-s + 1/4·16-s + 1.22·19-s − 0.0233·29-s − 0.631·31-s + 1/6·36-s − 1.82·41-s + 1.00·44-s + 1.56·49-s + 0.799·59-s + 3.00·61-s − 1/8·64-s + 2.30·71-s − 0.611·76-s + 0.100·79-s + 1/9·81-s + 2.46·89-s + 0.672·99-s − 2.83·101-s − 0.562·109-s + 0.0116·116-s + 1.05·121-s + 0.315·124-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 22500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 22500 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(22500\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(13282.9\)
Root analytic conductor: \(10.7355\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 22500,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(\approx\) \(2.268151028\)
\(L(\frac12)\) \(\approx\) \(2.268151028\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( 1 + p^{10} T^{2} \)
3$C_2$ \( 1 + p^{10} T^{2} \)
5 \( 1 \)
good7$C_2^2$ \( 1 - 3093348382 T^{2} + p^{22} T^{4} \)
11$C_2$ \( ( 1 + 538680 T + p^{11} T^{2} )^{2} \)
13$C_2^2$ \( 1 - 3583665120838 T^{2} + p^{22} T^{4} \)
17$C_2^2$ \( 1 + 27636633878978 T^{2} + p^{22} T^{4} \)
19$C_2$ \( ( 1 - 6599596 T + p^{11} T^{2} )^{2} \)
23$C_2^2$ \( 1 - 680045448587854 T^{2} + p^{22} T^{4} \)
29$C_2$ \( ( 1 + 1288146 T + p^{11} T^{2} )^{2} \)
31$C_2$ \( ( 1 + 50347432 T + p^{11} T^{2} )^{2} \)
37$C_2^2$ \( 1 + 66883046829474410 T^{2} + p^{22} T^{4} \)
41$C_2$ \( ( 1 + 678700566 T + p^{11} T^{2} )^{2} \)
43$C_2^2$ \( 1 - 1732577181193624150 T^{2} + p^{22} T^{4} \)
47$C_2^2$ \( 1 - 3465780428453834206 T^{2} + p^{22} T^{4} \)
53$C_2^2$ \( 1 + 2315353969649815850 T^{2} + p^{22} T^{4} \)
59$C_2$ \( ( 1 - 2196450120 T + p^{11} T^{2} )^{2} \)
61$C_2$ \( ( 1 - 9925999550 T + p^{11} T^{2} )^{2} \)
67$C_2^2$ \( 1 - \)\(24\!\cdots\!22\)\( T^{2} + p^{22} T^{4} \)
71$C_2$ \( ( 1 - 17538228960 T + p^{11} T^{2} )^{2} \)
73$C_2^2$ \( 1 - \)\(24\!\cdots\!58\)\( T^{2} + p^{22} T^{4} \)
79$C_2$ \( ( 1 - 1369906648 T + p^{11} T^{2} )^{2} \)
83$C_2^2$ \( 1 + \)\(12\!\cdots\!22\)\( T^{2} + p^{22} T^{4} \)
89$C_2$ \( ( 1 - 64990633758 T + p^{11} T^{2} )^{2} \)
97$C_2^2$ \( 1 - \)\(40\!\cdots\!10\)\( T^{2} + p^{22} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.07948428121850176415127586668, −10.66018987274215328968772415730, −10.12223288021957150570746673845, −9.799179090676958254304544023121, −9.142671822268279368351747233761, −8.602897774166331224795237643864, −7.979540198669331054307427891918, −7.83422185497971845910783694203, −7.02773042998104800233377820398, −6.59712871573258532387561546449, −5.49211425092502640581345108785, −5.32665368479449474602373178545, −5.10866799603819824266865121182, −4.05769254528782319258157417925, −3.57444586638891004604258954507, −2.87080147225612097379989098763, −2.39221217877523683379028353064, −1.71572983772996465764553102892, −0.65283199407993306595210988940, −0.49838267146243448985034950345, 0.49838267146243448985034950345, 0.65283199407993306595210988940, 1.71572983772996465764553102892, 2.39221217877523683379028353064, 2.87080147225612097379989098763, 3.57444586638891004604258954507, 4.05769254528782319258157417925, 5.10866799603819824266865121182, 5.32665368479449474602373178545, 5.49211425092502640581345108785, 6.59712871573258532387561546449, 7.02773042998104800233377820398, 7.83422185497971845910783694203, 7.979540198669331054307427891918, 8.602897774166331224795237643864, 9.142671822268279368351747233761, 9.799179090676958254304544023121, 10.12223288021957150570746673845, 10.66018987274215328968772415730, 11.07948428121850176415127586668

Graph of the $Z$-function along the critical line