L(s) = 1 | + (−0.879 + 0.879i)2-s + (−15.5 − 0.0935i)3-s + 30.4i·4-s + (−51.8 + 20.8i)5-s + (13.7 − 13.6i)6-s + (−11.3 − 11.3i)7-s + (−54.9 − 54.9i)8-s + (242. + 2.91i)9-s + (27.3 − 63.9i)10-s + 359. i·11-s + (2.84 − 474. i)12-s + (370. − 370. i)13-s + 19.9·14-s + (810. − 319. i)15-s − 877.·16-s + (−1.24e3 + 1.24e3i)17-s + ⋯ |
L(s) = 1 | + (−0.155 + 0.155i)2-s + (−0.999 − 0.00600i)3-s + 0.951i·4-s + (−0.928 + 0.372i)5-s + (0.156 − 0.154i)6-s + (−0.0874 − 0.0874i)7-s + (−0.303 − 0.303i)8-s + (0.999 + 0.0120i)9-s + (0.0864 − 0.202i)10-s + 0.896i·11-s + (0.00571 − 0.951i)12-s + (0.607 − 0.607i)13-s + 0.0272·14-s + (0.930 − 0.366i)15-s − 0.857·16-s + (−1.04 + 1.04i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.801 - 0.598i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 15 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.801 - 0.598i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(0.167514 + 0.503979i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.167514 + 0.503979i\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (15.5 + 0.0935i)T \) |
| 5 | \( 1 + (51.8 - 20.8i)T \) |
good | 2 | \( 1 + (0.879 - 0.879i)T - 32iT^{2} \) |
| 7 | \( 1 + (11.3 + 11.3i)T + 1.68e4iT^{2} \) |
| 11 | \( 1 - 359. iT - 1.61e5T^{2} \) |
| 13 | \( 1 + (-370. + 370. i)T - 3.71e5iT^{2} \) |
| 17 | \( 1 + (1.24e3 - 1.24e3i)T - 1.41e6iT^{2} \) |
| 19 | \( 1 - 2.00e3iT - 2.47e6T^{2} \) |
| 23 | \( 1 + (245. + 245. i)T + 6.43e6iT^{2} \) |
| 29 | \( 1 - 7.05e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + 3.03e3T + 2.86e7T^{2} \) |
| 37 | \( 1 + (-2.36e3 - 2.36e3i)T + 6.93e7iT^{2} \) |
| 41 | \( 1 + 6.43e3iT - 1.15e8T^{2} \) |
| 43 | \( 1 + (9.71e3 - 9.71e3i)T - 1.47e8iT^{2} \) |
| 47 | \( 1 + (1.49e3 - 1.49e3i)T - 2.29e8iT^{2} \) |
| 53 | \( 1 + (-1.87e4 - 1.87e4i)T + 4.18e8iT^{2} \) |
| 59 | \( 1 + 2.12e4T + 7.14e8T^{2} \) |
| 61 | \( 1 + 691.T + 8.44e8T^{2} \) |
| 67 | \( 1 + (-4.05e4 - 4.05e4i)T + 1.35e9iT^{2} \) |
| 71 | \( 1 - 8.44e3iT - 1.80e9T^{2} \) |
| 73 | \( 1 + (1.16e4 - 1.16e4i)T - 2.07e9iT^{2} \) |
| 79 | \( 1 - 2.98e4iT - 3.07e9T^{2} \) |
| 83 | \( 1 + (-3.06e4 - 3.06e4i)T + 3.93e9iT^{2} \) |
| 89 | \( 1 - 1.06e5T + 5.58e9T^{2} \) |
| 97 | \( 1 + (3.31e4 + 3.31e4i)T + 8.58e9iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.43572585283257965235185949304, −17.51056295141656082776397216313, −16.27356351526325809735644011902, −15.28270785697160948287131829794, −12.86463002197611792616586580518, −11.91950638669645236798116503634, −10.51479122532084467998627333250, −8.118439301755867476030298499460, −6.68395585833447635949171037711, −4.07155529384468121421401844825,
0.53834597883874541952000279013, 4.82671176095074523106285874661, 6.61833731561102045249896667770, 9.037178237645944389802601770136, 10.93496023098910657612642966998, 11.67475554721010373131882041844, 13.54973977056844404115116623372, 15.51441297541790330912536519983, 16.25394959177529827159804732305, 17.98186160059817464962634485264