Properties

Label 8-15e4-1.1-c2e4-0-0
Degree $8$
Conductor $50625$
Sign $1$
Analytic cond. $0.0279064$
Root an. cond. $0.639312$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 8·4-s − 4·5-s + 4·7-s − 12·8-s + 16·10-s + 16·11-s − 32·13-s − 16·14-s + 15·16-s − 40·17-s − 32·20-s − 64·22-s + 56·23-s + 16·25-s + 128·26-s + 32·28-s − 16·31-s − 40·32-s + 160·34-s − 16·35-s + 64·37-s + 48·40-s − 56·41-s − 8·43-s + 128·44-s − 224·46-s + ⋯
L(s)  = 1  − 2·2-s + 2·4-s − 4/5·5-s + 4/7·7-s − 3/2·8-s + 8/5·10-s + 1.45·11-s − 2.46·13-s − 8/7·14-s + 0.937·16-s − 2.35·17-s − 8/5·20-s − 2.90·22-s + 2.43·23-s + 0.639·25-s + 4.92·26-s + 8/7·28-s − 0.516·31-s − 5/4·32-s + 4.70·34-s − 0.457·35-s + 1.72·37-s + 6/5·40-s − 1.36·41-s − 0.186·43-s + 2.90·44-s − 4.86·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 50625 ^{s/2} \, \Gamma_{\C}(s+1)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(50625\)    =    \(3^{4} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(0.0279064\)
Root analytic conductor: \(0.639312\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 50625,\ (\ :1, 1, 1, 1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.1573066915\)
\(L(\frac12)\) \(\approx\) \(0.1573066915\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3$C_2^2$ \( 1 + p^{2} T^{4} \)
5$C_2^2$ \( 1 + 4 T + 4 p^{2} T^{3} + p^{4} T^{4} \)
good2$D_4\times C_2$ \( 1 + p^{2} T + p^{3} T^{2} + 3 p^{2} T^{3} + 17 T^{4} + 3 p^{4} T^{5} + p^{7} T^{6} + p^{8} T^{7} + p^{8} T^{8} \)
7$D_4\times C_2$ \( 1 - 4 T + 8 T^{2} - 156 T^{3} + 2942 T^{4} - 156 p^{2} T^{5} + 8 p^{4} T^{6} - 4 p^{6} T^{7} + p^{8} T^{8} \)
11$D_{4}$ \( ( 1 - 8 T + 204 T^{2} - 8 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
13$D_4\times C_2$ \( 1 + 32 T + 512 T^{2} + 9120 T^{3} + 148994 T^{4} + 9120 p^{2} T^{5} + 512 p^{4} T^{6} + 32 p^{6} T^{7} + p^{8} T^{8} \)
17$D_4\times C_2$ \( 1 + 40 T + 800 T^{2} + 15240 T^{3} + 281858 T^{4} + 15240 p^{2} T^{5} + 800 p^{4} T^{6} + 40 p^{6} T^{7} + p^{8} T^{8} \)
19$D_4\times C_2$ \( 1 - 940 T^{2} + 450438 T^{4} - 940 p^{4} T^{6} + p^{8} T^{8} \)
23$D_4\times C_2$ \( 1 - 56 T + 1568 T^{2} - 50904 T^{3} + 1508162 T^{4} - 50904 p^{2} T^{5} + 1568 p^{4} T^{6} - 56 p^{6} T^{7} + p^{8} T^{8} \)
29$D_4\times C_2$ \( 1 - 2128 T^{2} + 2165634 T^{4} - 2128 p^{4} T^{6} + p^{8} T^{8} \)
31$D_{4}$ \( ( 1 + 8 T + 1722 T^{2} + 8 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
37$D_4\times C_2$ \( 1 - 64 T + 2048 T^{2} - 58176 T^{3} + 1440962 T^{4} - 58176 p^{2} T^{5} + 2048 p^{4} T^{6} - 64 p^{6} T^{7} + p^{8} T^{8} \)
41$D_{4}$ \( ( 1 + 28 T + 3342 T^{2} + 28 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
43$D_4\times C_2$ \( 1 + 8 T + 32 T^{2} + 5256 T^{3} - 557566 T^{4} + 5256 p^{2} T^{5} + 32 p^{4} T^{6} + 8 p^{6} T^{7} + p^{8} T^{8} \)
47$D_4\times C_2$ \( 1 - 128 T + 8192 T^{2} - 506496 T^{3} + 28260194 T^{4} - 506496 p^{2} T^{5} + 8192 p^{4} T^{6} - 128 p^{6} T^{7} + p^{8} T^{8} \)
53$D_4\times C_2$ \( 1 - 56 T + 1568 T^{2} - 155064 T^{3} + 15333122 T^{4} - 155064 p^{2} T^{5} + 1568 p^{4} T^{6} - 56 p^{6} T^{7} + p^{8} T^{8} \)
59$D_4\times C_2$ \( 1 + 200 T^{2} - 5646222 T^{4} + 200 p^{4} T^{6} + p^{8} T^{8} \)
61$D_{4}$ \( ( 1 - 100 T + 7998 T^{2} - 100 p^{2} T^{3} + p^{4} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 + 200 T + 20000 T^{2} + 1888200 T^{3} + 153742658 T^{4} + 1888200 p^{2} T^{5} + 20000 p^{4} T^{6} + 200 p^{6} T^{7} + p^{8} T^{8} \)
71$C_2$ \( ( 1 + 68 T + p^{2} T^{2} )^{4} \)
73$D_4\times C_2$ \( 1 - 76 T + 2888 T^{2} + 65436 T^{3} - 36833458 T^{4} + 65436 p^{2} T^{5} + 2888 p^{4} T^{6} - 76 p^{6} T^{7} + p^{8} T^{8} \)
79$C_2^2$ \( ( 1 - 11882 T^{2} + p^{4} T^{4} )^{2} \)
83$D_4\times C_2$ \( 1 + 16 T + 128 T^{2} + 101328 T^{3} + 79904642 T^{4} + 101328 p^{2} T^{5} + 128 p^{4} T^{6} + 16 p^{6} T^{7} + p^{8} T^{8} \)
89$D_4\times C_2$ \( 1 - 16060 T^{2} + 188845638 T^{4} - 16060 p^{4} T^{6} + p^{8} T^{8} \)
97$D_4\times C_2$ \( 1 + 20 T + 200 T^{2} + 173820 T^{3} + 150551438 T^{4} + 173820 p^{2} T^{5} + 200 p^{4} T^{6} + 20 p^{6} T^{7} + p^{8} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.75812454433060953282430304298, −14.63331949910544798040443994802, −14.30687367756745500554832403620, −13.40415428810468843990665511310, −13.21971398269982858515992813489, −12.80708065831191322667351679521, −12.15455676244450934468808544599, −11.91071577448152424986163173134, −11.57135144001210906439504254971, −11.19155019164708753230762264607, −10.89979022089326742614525957579, −10.24451000268981907618260024464, −10.11337379201305347934855388501, −9.138486862222952065413425180733, −9.082219061602929262321369428557, −9.033008024282958162235044981256, −8.502508879335912284238454206158, −7.77350152759057367301298746720, −7.17061287013729177032608512564, −7.11450047940662188936748839910, −6.73548236126271204075145647014, −5.59617306224645946076413331450, −4.70631905387741320263632042213, −4.23786525700189323868467818503, −2.58030800527451952960517598202, 2.58030800527451952960517598202, 4.23786525700189323868467818503, 4.70631905387741320263632042213, 5.59617306224645946076413331450, 6.73548236126271204075145647014, 7.11450047940662188936748839910, 7.17061287013729177032608512564, 7.77350152759057367301298746720, 8.502508879335912284238454206158, 9.033008024282958162235044981256, 9.082219061602929262321369428557, 9.138486862222952065413425180733, 10.11337379201305347934855388501, 10.24451000268981907618260024464, 10.89979022089326742614525957579, 11.19155019164708753230762264607, 11.57135144001210906439504254971, 11.91071577448152424986163173134, 12.15455676244450934468808544599, 12.80708065831191322667351679521, 13.21971398269982858515992813489, 13.40415428810468843990665511310, 14.30687367756745500554832403620, 14.63331949910544798040443994802, 14.75812454433060953282430304298

Graph of the $Z$-function along the critical line