L(s) = 1 | + (−0.5 + 0.866i)3-s + (−1 − 1.73i)5-s + (−2.5 + 4.33i)7-s + (−0.499 − 0.866i)9-s + (1.5 + 2.59i)11-s + 1.99·15-s + (−3 + 5.19i)17-s + (3 − 5.19i)19-s + (−2.5 − 4.33i)21-s + (0.500 − 0.866i)25-s + 0.999·27-s − 3·29-s + (−3.5 − 4.33i)31-s − 3·33-s + 10·35-s + ⋯ |
L(s) = 1 | + (−0.288 + 0.499i)3-s + (−0.447 − 0.774i)5-s + (−0.944 + 1.63i)7-s + (−0.166 − 0.288i)9-s + (0.452 + 0.783i)11-s + 0.516·15-s + (−0.727 + 1.26i)17-s + (0.688 − 1.19i)19-s + (−0.545 − 0.944i)21-s + (0.100 − 0.173i)25-s + 0.192·27-s − 0.557·29-s + (−0.628 − 0.777i)31-s − 0.522·33-s + 1.69·35-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.695 + 0.718i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 31 | \( 1 + (3.5 + 4.33i)T \) |
good | 5 | \( 1 + (1 + 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.5 - 4.33i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 + 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 23T^{2} \) |
| 29 | \( 1 + 3T + 29T^{2} \) |
| 37 | \( 1 + (-4 + 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2 + 3.46i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4 - 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.5 - 9.52i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + 8T + 61T^{2} \) |
| 67 | \( 1 + (6 + 10.3i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (8 + 13.8i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (1 + 1.73i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.5 - 9.52i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 2T + 89T^{2} \) |
| 97 | \( 1 - 19T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.153673149410979115889597609400, −8.767341415528167341502239949644, −7.67244069435879189612221353971, −6.50873312823639780429910019951, −5.90153276319626711006001732227, −4.97068752152776762962527411895, −4.21643474825327726722132029789, −3.12165467101626265349414709420, −1.95783712826099230772220978265, 0,
1.28243852987123691967920215766, 3.12949915314682400216547233753, 3.54162237954479477473247677304, 4.69154069124119046346019414988, 5.97238991762956117799807555645, 6.76572691196435997534573255817, 7.20319955575012453977850619440, 7.87520613485329641960022481136, 9.047737945493122687598691912892