L(s) = 1 | + (0.809 + 0.587i)3-s + (0.5 − 1.53i)7-s + (0.309 + 0.951i)9-s + (−0.5 − 0.363i)13-s + (0.5 − 0.363i)19-s + (1.30 − 0.951i)21-s + 25-s + (−0.309 + 0.951i)27-s + (0.809 + 0.587i)31-s − 1.61·37-s + (−0.190 − 0.587i)39-s + (−1.30 + 0.951i)43-s + (−1.30 − 0.951i)49-s + 0.618·57-s + 0.618·61-s + ⋯ |
L(s) = 1 | + (0.809 + 0.587i)3-s + (0.5 − 1.53i)7-s + (0.309 + 0.951i)9-s + (−0.5 − 0.363i)13-s + (0.5 − 0.363i)19-s + (1.30 − 0.951i)21-s + 25-s + (−0.309 + 0.951i)27-s + (0.809 + 0.587i)31-s − 1.61·37-s + (−0.190 − 0.587i)39-s + (−1.30 + 0.951i)43-s + (−1.30 − 0.951i)49-s + 0.618·57-s + 0.618·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0148i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0148i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.504582540\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.504582540\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.809 - 0.587i)T \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
good | 5 | \( 1 - T^{2} \) |
| 7 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 11 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.5 + 0.363i)T + (0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + 1.61T + T^{2} \) |
| 41 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 47 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 61 | \( 1 - 0.618T + T^{2} \) |
| 67 | \( 1 + 0.618T + T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (0.190 + 0.587i)T + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.190 + 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.864927441176265800709225237753, −8.819043005242931912960336531212, −8.131718736525718296272021863471, −7.35836206754327133862842338329, −6.77065082541891905727893728622, −5.15462758307147226714010521129, −4.63565855609123401904022458158, −3.67843462891121149306594932282, −2.84318413770895777631909381435, −1.37873456310526249170272451904,
1.66627838901613839352309436874, 2.50354207201746235452166729523, 3.40315464620159521524429660193, 4.74039603216732057396849673626, 5.58542848718481292594954629898, 6.54684092144748555003067577882, 7.34151589119615679965503225055, 8.297015965784398800189178866524, 8.729524858801416154724448558150, 9.440902918215098949800515797820