Properties

Label 4-1488e2-1.1-c0e2-0-1
Degree $4$
Conductor $2214144$
Sign $1$
Analytic cond. $0.551467$
Root an. cond. $0.861747$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 3·13-s + 3·19-s − 25-s + 27-s − 2·31-s + 3·37-s − 3·39-s − 43-s − 49-s − 3·57-s − 3·73-s + 75-s + 2·79-s − 81-s + 2·93-s + 2·97-s + 3·103-s + 2·109-s − 3·111-s − 121-s + 127-s + 129-s + 131-s + 137-s + 139-s + 147-s + ⋯
L(s)  = 1  − 3-s + 3·13-s + 3·19-s − 25-s + 27-s − 2·31-s + 3·37-s − 3·39-s − 43-s − 49-s − 3·57-s − 3·73-s + 75-s + 2·79-s − 81-s + 2·93-s + 2·97-s + 3·103-s + 2·109-s − 3·111-s − 121-s + 127-s + 129-s + 131-s + 137-s + 139-s + 147-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2214144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2214144 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2214144\)    =    \(2^{8} \cdot 3^{2} \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(0.551467\)
Root analytic conductor: \(0.861747\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 2214144,\ (\ :0, 0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.9763530388\)
\(L(\frac12)\) \(\approx\) \(0.9763530388\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_2$ \( 1 + T + T^{2} \)
31$C_1$ \( ( 1 + T )^{2} \)
good5$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
7$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
11$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
13$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
17$C_2^2$ \( 1 - T^{2} + T^{4} \)
19$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
29$C_2$ \( ( 1 + T^{2} )^{2} \)
37$C_1$$\times$$C_2$ \( ( 1 - T )^{2}( 1 - T + T^{2} ) \)
41$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
43$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 - T + T^{2} ) \)
47$C_2$ \( ( 1 + T^{2} )^{2} \)
53$C_2^2$ \( 1 - T^{2} + T^{4} \)
59$C_2^2$ \( 1 - T^{2} + T^{4} \)
61$C_1$$\times$$C_1$ \( ( 1 - T )^{2}( 1 + T )^{2} \)
67$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
71$C_2^2$ \( 1 - T^{2} + T^{4} \)
73$C_1$$\times$$C_2$ \( ( 1 + T )^{2}( 1 + T + T^{2} ) \)
79$C_2$ \( ( 1 - T + T^{2} )^{2} \)
83$C_2$ \( ( 1 - T + T^{2} )( 1 + T + T^{2} ) \)
89$C_2$ \( ( 1 + T^{2} )^{2} \)
97$C_2$ \( ( 1 - T + T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.867429201776597638038841545212, −9.440465664961935287953666871326, −9.140400379825146924920021190663, −8.763665438343648671039901265592, −8.262841052908605593267057004385, −7.83626791720227650767396892698, −7.46678206856262876879541337323, −7.15199839785478074993209405750, −6.30000420357904096288706192879, −6.18591892325746597072404099952, −5.72082785141743650162454159779, −5.69219407864362707219510463281, −4.86576586945234488161609585313, −4.65035761907430305662006884632, −3.68697446470634988705270047630, −3.52559967904300016003776207883, −3.20560429384883308821798574757, −2.25734666938253826775592471845, −1.27035627952216217071655140511, −1.09417080174029216707941007277, 1.09417080174029216707941007277, 1.27035627952216217071655140511, 2.25734666938253826775592471845, 3.20560429384883308821798574757, 3.52559967904300016003776207883, 3.68697446470634988705270047630, 4.65035761907430305662006884632, 4.86576586945234488161609585313, 5.69219407864362707219510463281, 5.72082785141743650162454159779, 6.18591892325746597072404099952, 6.30000420357904096288706192879, 7.15199839785478074993209405750, 7.46678206856262876879541337323, 7.83626791720227650767396892698, 8.262841052908605593267057004385, 8.763665438343648671039901265592, 9.140400379825146924920021190663, 9.440465664961935287953666871326, 9.867429201776597638038841545212

Graph of the $Z$-function along the critical line