Properties

Label 2-1480-1.1-c1-0-10
Degree $2$
Conductor $1480$
Sign $1$
Analytic cond. $11.8178$
Root an. cond. $3.43771$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.612·3-s − 5-s + 3.03·7-s − 2.62·9-s − 0.741·11-s + 4.52·13-s − 0.612·15-s + 2.10·17-s − 3.77·19-s + 1.85·21-s + 5.48·23-s + 25-s − 3.44·27-s + 9.90·29-s − 4.71·31-s − 0.454·33-s − 3.03·35-s − 37-s + 2.77·39-s − 2.99·41-s + 12.1·43-s + 2.62·45-s + 5.73·47-s + 2.20·49-s + 1.29·51-s + 9.09·53-s + 0.741·55-s + ⋯
L(s)  = 1  + 0.353·3-s − 0.447·5-s + 1.14·7-s − 0.874·9-s − 0.223·11-s + 1.25·13-s − 0.158·15-s + 0.511·17-s − 0.866·19-s + 0.405·21-s + 1.14·23-s + 0.200·25-s − 0.663·27-s + 1.83·29-s − 0.846·31-s − 0.0790·33-s − 0.512·35-s − 0.164·37-s + 0.444·39-s − 0.468·41-s + 1.85·43-s + 0.391·45-s + 0.836·47-s + 0.314·49-s + 0.180·51-s + 1.24·53-s + 0.0999·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1480\)    =    \(2^{3} \cdot 5 \cdot 37\)
Sign: $1$
Analytic conductor: \(11.8178\)
Root analytic conductor: \(3.43771\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1480,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.985013247\)
\(L(\frac12)\) \(\approx\) \(1.985013247\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + T \)
37 \( 1 + T \)
good3 \( 1 - 0.612T + 3T^{2} \)
7 \( 1 - 3.03T + 7T^{2} \)
11 \( 1 + 0.741T + 11T^{2} \)
13 \( 1 - 4.52T + 13T^{2} \)
17 \( 1 - 2.10T + 17T^{2} \)
19 \( 1 + 3.77T + 19T^{2} \)
23 \( 1 - 5.48T + 23T^{2} \)
29 \( 1 - 9.90T + 29T^{2} \)
31 \( 1 + 4.71T + 31T^{2} \)
41 \( 1 + 2.99T + 41T^{2} \)
43 \( 1 - 12.1T + 43T^{2} \)
47 \( 1 - 5.73T + 47T^{2} \)
53 \( 1 - 9.09T + 53T^{2} \)
59 \( 1 - 5.06T + 59T^{2} \)
61 \( 1 + 15.0T + 61T^{2} \)
67 \( 1 - 3.55T + 67T^{2} \)
71 \( 1 - 10.1T + 71T^{2} \)
73 \( 1 + 8.15T + 73T^{2} \)
79 \( 1 + 2.00T + 79T^{2} \)
83 \( 1 - 11.3T + 83T^{2} \)
89 \( 1 - 3.26T + 89T^{2} \)
97 \( 1 - 2.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.176174203422804490333033838788, −8.557098295176781875045190882688, −8.128407746122018263486218149242, −7.25386664452878993629771786091, −6.16880926361256912263456970868, −5.32110842242707418188179985644, −4.40346158587637574309514131906, −3.43915397723303425855806444210, −2.41340336392409779298030448841, −1.04745989450988111344053866161, 1.04745989450988111344053866161, 2.41340336392409779298030448841, 3.43915397723303425855806444210, 4.40346158587637574309514131906, 5.32110842242707418188179985644, 6.16880926361256912263456970868, 7.25386664452878993629771786091, 8.128407746122018263486218149242, 8.557098295176781875045190882688, 9.176174203422804490333033838788

Graph of the $Z$-function along the critical line