Properties

Label 2-1472-1.1-c3-0-41
Degree $2$
Conductor $1472$
Sign $1$
Analytic cond. $86.8508$
Root an. cond. $9.31937$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.42·3-s − 14.1·5-s + 14.0·7-s + 14.2·9-s − 55.5·11-s + 18.3·13-s − 90.5·15-s + 10.0·17-s + 161.·19-s + 89.9·21-s + 23·23-s + 73.8·25-s − 81.9·27-s − 183.·29-s + 144.·31-s − 356.·33-s − 197.·35-s − 181.·37-s + 117.·39-s + 77.7·41-s + 315.·43-s − 200.·45-s + 524.·47-s − 146.·49-s + 64.3·51-s − 73.7·53-s + 782.·55-s + ⋯
L(s)  = 1  + 1.23·3-s − 1.26·5-s + 0.756·7-s + 0.527·9-s − 1.52·11-s + 0.390·13-s − 1.55·15-s + 0.143·17-s + 1.94·19-s + 0.934·21-s + 0.208·23-s + 0.591·25-s − 0.584·27-s − 1.17·29-s + 0.838·31-s − 1.88·33-s − 0.954·35-s − 0.806·37-s + 0.482·39-s + 0.296·41-s + 1.11·43-s − 0.665·45-s + 1.62·47-s − 0.427·49-s + 0.176·51-s − 0.191·53-s + 1.91·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $1$
Analytic conductor: \(86.8508\)
Root analytic conductor: \(9.31937\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.599425481\)
\(L(\frac12)\) \(\approx\) \(2.599425481\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 - 23T \)
good3 \( 1 - 6.42T + 27T^{2} \)
5 \( 1 + 14.1T + 125T^{2} \)
7 \( 1 - 14.0T + 343T^{2} \)
11 \( 1 + 55.5T + 1.33e3T^{2} \)
13 \( 1 - 18.3T + 2.19e3T^{2} \)
17 \( 1 - 10.0T + 4.91e3T^{2} \)
19 \( 1 - 161.T + 6.85e3T^{2} \)
29 \( 1 + 183.T + 2.43e4T^{2} \)
31 \( 1 - 144.T + 2.97e4T^{2} \)
37 \( 1 + 181.T + 5.06e4T^{2} \)
41 \( 1 - 77.7T + 6.89e4T^{2} \)
43 \( 1 - 315.T + 7.95e4T^{2} \)
47 \( 1 - 524.T + 1.03e5T^{2} \)
53 \( 1 + 73.7T + 1.48e5T^{2} \)
59 \( 1 + 132.T + 2.05e5T^{2} \)
61 \( 1 + 236.T + 2.26e5T^{2} \)
67 \( 1 - 493.T + 3.00e5T^{2} \)
71 \( 1 - 806.T + 3.57e5T^{2} \)
73 \( 1 - 1.01e3T + 3.89e5T^{2} \)
79 \( 1 - 599.T + 4.93e5T^{2} \)
83 \( 1 + 642.T + 5.71e5T^{2} \)
89 \( 1 - 883.T + 7.04e5T^{2} \)
97 \( 1 + 71.2T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.950855599949069538098776724765, −8.091431692991254144958196760889, −7.76150685646214158097807197095, −7.29079861910023182420245080960, −5.63334131587720319602008650971, −4.85927837335723460659523530376, −3.75917336624620714749656565791, −3.14500652217727997119470192244, −2.18046875430725992814412923950, −0.73775011408151792582967128454, 0.73775011408151792582967128454, 2.18046875430725992814412923950, 3.14500652217727997119470192244, 3.75917336624620714749656565791, 4.85927837335723460659523530376, 5.63334131587720319602008650971, 7.29079861910023182420245080960, 7.76150685646214158097807197095, 8.091431692991254144958196760889, 8.950855599949069538098776724765

Graph of the $Z$-function along the critical line