Properties

Label 2-1472-184.91-c1-0-0
Degree $2$
Conductor $1472$
Sign $-0.640 - 0.767i$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.11·3-s − 2.66·5-s + 1.46·7-s + 1.45·9-s − 1.58i·11-s − 3.11i·13-s + 5.62·15-s − 1.72i·17-s + 3.35i·19-s − 3.09·21-s + (4.35 − 2.01i)23-s + 2.09·25-s + 3.25·27-s − 5.01i·29-s + 3.47i·31-s + ⋯
L(s)  = 1  − 1.21·3-s − 1.19·5-s + 0.554·7-s + 0.486·9-s − 0.477i·11-s − 0.863i·13-s + 1.45·15-s − 0.419i·17-s + 0.770i·19-s − 0.675·21-s + (0.907 − 0.420i)23-s + 0.419·25-s + 0.626·27-s − 0.931i·29-s + 0.624i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.640 - 0.767i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.640 - 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-0.640 - 0.767i$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1472} (735, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ -0.640 - 0.767i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1764277807\)
\(L(\frac12)\) \(\approx\) \(0.1764277807\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + (-4.35 + 2.01i)T \)
good3 \( 1 + 2.11T + 3T^{2} \)
5 \( 1 + 2.66T + 5T^{2} \)
7 \( 1 - 1.46T + 7T^{2} \)
11 \( 1 + 1.58iT - 11T^{2} \)
13 \( 1 + 3.11iT - 13T^{2} \)
17 \( 1 + 1.72iT - 17T^{2} \)
19 \( 1 - 3.35iT - 19T^{2} \)
29 \( 1 + 5.01iT - 29T^{2} \)
31 \( 1 - 3.47iT - 31T^{2} \)
37 \( 1 + 6.45T + 37T^{2} \)
41 \( 1 + 1.73T + 41T^{2} \)
43 \( 1 - 2.59iT - 43T^{2} \)
47 \( 1 + 0.722iT - 47T^{2} \)
53 \( 1 - 5.13T + 53T^{2} \)
59 \( 1 + 0.758T + 59T^{2} \)
61 \( 1 + 7.39T + 61T^{2} \)
67 \( 1 - 16.0iT - 67T^{2} \)
71 \( 1 + 5.65iT - 71T^{2} \)
73 \( 1 + 11.5T + 73T^{2} \)
79 \( 1 + 7.61T + 79T^{2} \)
83 \( 1 - 14.3iT - 83T^{2} \)
89 \( 1 - 7.61iT - 89T^{2} \)
97 \( 1 - 14.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.11324647742892312259347259640, −8.774270062001800367039997024606, −8.125930835368384565101799920451, −7.39536553644078957389484877229, −6.49167409118238115250199863492, −5.55363278575305244086876031858, −4.93598183945525487917473301924, −3.97721159409043735907219107251, −2.93476364467590711974337894663, −1.05749842186402631805330335025, 0.10330441747801744119435737341, 1.60995270070396635100983836668, 3.26492793504023566622580435667, 4.42366965562196250080085320575, 4.88116082613720623392001341536, 5.87303218209380850005738592557, 6.93085061137695694546340376891, 7.34111097365946185567297327137, 8.418732927089241981102217844421, 9.111734372120372362467481679390

Graph of the $Z$-function along the critical line