L(s) = 1 | − 3.22·3-s + 3.21·5-s + 2.55·7-s + 7.39·9-s + 5.44i·11-s + 2.85i·13-s − 10.3·15-s + 6.49i·17-s + 2.41i·19-s − 8.25·21-s + (1.63 − 4.51i)23-s + 5.32·25-s − 14.1·27-s − 4.62i·29-s − 2.88i·31-s + ⋯ |
L(s) = 1 | − 1.86·3-s + 1.43·5-s + 0.967·7-s + 2.46·9-s + 1.64i·11-s + 0.791i·13-s − 2.67·15-s + 1.57i·17-s + 0.554i·19-s − 1.80·21-s + (0.339 − 0.940i)23-s + 1.06·25-s − 2.72·27-s − 0.859i·29-s − 0.518i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0849 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0849 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.214283820\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.214283820\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + (-1.63 + 4.51i)T \) |
good | 3 | \( 1 + 3.22T + 3T^{2} \) |
| 5 | \( 1 - 3.21T + 5T^{2} \) |
| 7 | \( 1 - 2.55T + 7T^{2} \) |
| 11 | \( 1 - 5.44iT - 11T^{2} \) |
| 13 | \( 1 - 2.85iT - 13T^{2} \) |
| 17 | \( 1 - 6.49iT - 17T^{2} \) |
| 19 | \( 1 - 2.41iT - 19T^{2} \) |
| 29 | \( 1 + 4.62iT - 29T^{2} \) |
| 31 | \( 1 + 2.88iT - 31T^{2} \) |
| 37 | \( 1 + 5.83T + 37T^{2} \) |
| 41 | \( 1 + 2.24T + 41T^{2} \) |
| 43 | \( 1 - 5.84iT - 43T^{2} \) |
| 47 | \( 1 - 7.75iT - 47T^{2} \) |
| 53 | \( 1 - 6.88T + 53T^{2} \) |
| 59 | \( 1 + 9.91T + 59T^{2} \) |
| 61 | \( 1 + 9.06T + 61T^{2} \) |
| 67 | \( 1 + 1.63iT - 67T^{2} \) |
| 71 | \( 1 + 3.58iT - 71T^{2} \) |
| 73 | \( 1 + 7.69T + 73T^{2} \) |
| 79 | \( 1 + 0.0691T + 79T^{2} \) |
| 83 | \( 1 - 2.38iT - 83T^{2} \) |
| 89 | \( 1 + 0.0691iT - 89T^{2} \) |
| 97 | \( 1 - 3.16iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02345822795948924880764205088, −9.206735373551790877518953714608, −7.901800642698734731176415253751, −6.93196961669424439906098014897, −6.21910650556653583085305305446, −5.73060760441707377044351758406, −4.66931216365692320250798374929, −4.40588808526707832217451859708, −1.90659401823543493907961705422, −1.56451173475446227872708703752,
0.65136981281130119588503635040, 1.62697649036427234009850595581, 3.17337766053090320650640625950, 4.83815551577412542764507153719, 5.40440916651101201102273583166, 5.67911666005163524116084951528, 6.67655296454074728808126334659, 7.38494657320035261115697970893, 8.678853815252243059086355140079, 9.467460347982415264079173108301