Properties

Label 2-1472-184.91-c1-0-41
Degree $2$
Conductor $1472$
Sign $-0.342 + 0.939i$
Analytic cond. $11.7539$
Root an. cond. $3.42840$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.29·3-s − 0.128·5-s − 1.95·7-s − 1.31·9-s − 3.98i·11-s + 3.75i·13-s − 0.167·15-s − 6.50i·17-s − 1.63i·19-s − 2.53·21-s + (4.77 + 0.420i)23-s − 4.98·25-s − 5.60·27-s − 6.60i·29-s + 0.894i·31-s + ⋯
L(s)  = 1  + 0.749·3-s − 0.0576·5-s − 0.737·7-s − 0.438·9-s − 1.20i·11-s + 1.04i·13-s − 0.0432·15-s − 1.57i·17-s − 0.374i·19-s − 0.552·21-s + (0.996 + 0.0875i)23-s − 0.996·25-s − 1.07·27-s − 1.22i·29-s + 0.160i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1472 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1472\)    =    \(2^{6} \cdot 23\)
Sign: $-0.342 + 0.939i$
Analytic conductor: \(11.7539\)
Root analytic conductor: \(3.42840\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1472} (735, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1472,\ (\ :1/2),\ -0.342 + 0.939i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.207652087\)
\(L(\frac12)\) \(\approx\) \(1.207652087\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
23 \( 1 + (-4.77 - 0.420i)T \)
good3 \( 1 - 1.29T + 3T^{2} \)
5 \( 1 + 0.128T + 5T^{2} \)
7 \( 1 + 1.95T + 7T^{2} \)
11 \( 1 + 3.98iT - 11T^{2} \)
13 \( 1 - 3.75iT - 13T^{2} \)
17 \( 1 + 6.50iT - 17T^{2} \)
19 \( 1 + 1.63iT - 19T^{2} \)
29 \( 1 + 6.60iT - 29T^{2} \)
31 \( 1 - 0.894iT - 31T^{2} \)
37 \( 1 + 4.16T + 37T^{2} \)
41 \( 1 - 9.65T + 41T^{2} \)
43 \( 1 + 10.6iT - 43T^{2} \)
47 \( 1 + 9.07iT - 47T^{2} \)
53 \( 1 + 9.33T + 53T^{2} \)
59 \( 1 - 6.06T + 59T^{2} \)
61 \( 1 + 12.6T + 61T^{2} \)
67 \( 1 + 0.570iT - 67T^{2} \)
71 \( 1 + 0.248iT - 71T^{2} \)
73 \( 1 - 1.45T + 73T^{2} \)
79 \( 1 - 11.2T + 79T^{2} \)
83 \( 1 - 9.45iT - 83T^{2} \)
89 \( 1 - 11.2iT - 89T^{2} \)
97 \( 1 + 4.83iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.240577750993543377121095922830, −8.633567850303003279105026814715, −7.70752028186467379198474819626, −6.88299881023795330575586167247, −6.03830887060115239506255312116, −5.11677778149169779728331782692, −3.86899229723569571724519806459, −3.10905519326148604433461439293, −2.27821195840234668085288699854, −0.41389757188912688035224594751, 1.64663982105011741393791319673, 2.86440580783993474448987711363, 3.53358588038717955801181963997, 4.60849028858525096968386779159, 5.75699551753479772248508104721, 6.45291422583167674805015988213, 7.63268770940305678097427179454, 8.016858227554012244459377163586, 9.052558776103954362240993462945, 9.589262529826702258346294740403

Graph of the $Z$-function along the critical line