| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 − 0.866i)4-s + (−0.666 − 2.13i)5-s + 0.999·6-s − 0.999i·8-s + (0.499 + 0.866i)9-s + (−1.64 − 1.51i)10-s + (1.19 − 2.07i)11-s + (0.866 − 0.499i)12-s − 3.80i·13-s + (0.489 − 2.18i)15-s + (−0.5 − 0.866i)16-s + (−1.70 − 0.985i)17-s + (0.866 + 0.499i)18-s + (−2.08 − 3.61i)19-s + ⋯ |
| L(s) = 1 | + (0.612 − 0.353i)2-s + (0.499 + 0.288i)3-s + (0.249 − 0.433i)4-s + (−0.298 − 0.954i)5-s + 0.408·6-s − 0.353i·8-s + (0.166 + 0.288i)9-s + (−0.520 − 0.479i)10-s + (0.360 − 0.624i)11-s + (0.249 − 0.144i)12-s − 1.05i·13-s + (0.126 − 0.563i)15-s + (−0.125 − 0.216i)16-s + (−0.413 − 0.238i)17-s + (0.204 + 0.117i)18-s + (−0.478 − 0.828i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.407 + 0.913i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1470 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.407 + 0.913i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.388595040\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.388595040\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 5 | \( 1 + (0.666 + 2.13i)T \) |
| 7 | \( 1 \) |
| good | 11 | \( 1 + (-1.19 + 2.07i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.80iT - 13T^{2} \) |
| 17 | \( 1 + (1.70 + 0.985i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.08 + 3.61i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (7.07 - 4.08i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 9.16T + 29T^{2} \) |
| 31 | \( 1 + (0.803 - 1.39i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.09 + 0.631i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.19T + 41T^{2} \) |
| 43 | \( 1 + 4.90iT - 43T^{2} \) |
| 47 | \( 1 + (-2.60 + 1.50i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-10.5 - 6.08i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.52 + 11.2i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.54 + 11.3i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.00 - 2.88i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.94T + 71T^{2} \) |
| 73 | \( 1 + (0.438 + 0.253i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.21 + 10.7i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 1.89iT - 83T^{2} \) |
| 89 | \( 1 + (-0.989 - 1.71i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 12.0iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.224860673167958841497693496034, −8.485576478480528976552911882188, −7.87812422393805832308921576492, −6.70999203596875601193500259325, −5.68150448956130174617895955595, −4.93759071604686481328123344229, −4.07846059699434216406356321646, −3.30057075365151943580716841046, −2.15198683601766189502109718926, −0.70916863792238987319286859226,
1.92644833258041665061502438188, 2.73936800057701962502227201699, 4.04258548664873551339689430860, 4.31633031845063880277898221770, 5.93175907512918186938894624456, 6.61799986764424301735238037936, 7.11153023039977748352097243286, 8.091174398479741552827521329429, 8.665078700746013279008433280708, 9.881332485302271511905638570251